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Abstract— We explore two different frequency control strate-
gies to ensure stability of power networks and achieve economic
dispatch between generators and controllable loads. We first
show the global asymptotic stability of a completely decentral-
ized frequency integral control. Then we design a distributed
averaging-based integral (DAI) control which operates by local
frequency sensing and neighborhood communication. Equilib-
rium analysis shows that DAI recovers the nominal frequency
with minimum total generation cost and user disutility for load
control after a change in generation or load. Local asymptotic
stability of DAI is established with a Lyapunov method. Simu-
lations demonstrate improvement in both transient and steady-
state performance achieved by the proposed control strategies,
compared to droop control.

I. INTRODUCTION

Maintaining the system frequency tightly around the nom-
inal value is important for power grids since frequency
excursions degrade power quality, may damage facilities, and
trip generators. Frequency control is traditionally performed
by adjusting real power generation to balance the load. This
traditional scheme has a hierarchical structure composed of
three layers working in concert, i.e., primary (droop con-
trol), secondary (automatic generation control) and tertiary
(economic dispatch), from fast to slow timescales [1].

The integration of distributed renewable generation, like
solar and wind power, introduces larger and faster fluctua-
tions in power supply and frequency. Hence relying purely
on generator-side frequency control requires more fast-acting
generators as spinning reserves, which are expensive and
produce high emissions. As a supplement to generator-side
frequency control, distributed load-side frequency control has
been extensively studied [2]–[7]. These studies have shown
significant performance improvement mainly due to fast-
acting capability of frequency-responsive loads and reduction
in the need for generation reserves. On the other hand, the
distributed energy resources, which generate either DC or
variable frequency AC power, are interfaced with the main
utility grid via power electronic DC/AC inverters. These
inverters are typically designed to emulate droop control
[8], [9]. Different from bulk generation via synchronous
machines, the controllable loads and inverters usually have
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low or no inertia. Hence, a structure preserving model
[10] with both positive and zero inertia buses is suitable
for design and stability analysis of frequency control in a
power network with bulk generators, controllable loads and
distributed energy resources interfaced via inverters.

Previous work on frequency control focuses on two is-
sues. The first issue is closed-loop stability of frquency-
controlled power systems, which has been studied for dif-
ferent generator-side frequency control schemes [11]–[14],
and for networks with linear frequency dependent loads [10],
[15]. All these studies use network models with nonlinear
power flows, which are more realistic than linearized mod-
els. Global asymptotic stability is usually established with
complicated control schemes which require some physical
parameters to be known, which is hard in practice. Oth-
erwise, simple decentralized droop control only guarantees
local asymptotic stability, and does not recover frequency to
the nominal value [10]. The second issue is incorporating
economic dispatch with frequency control at a fast (sec-
onds) timescale, which breaks the traditional hierarchy of
frequency control. Existing work on this issue ranges from
generator side [16]–[22] or load side [23], [24] to microgrids
[8], [25]. A common feature of these studies is that, while
variations of economic dispatch are solved over the entire
network, the control schemes are decentralized (in that only
local sensing and feedback is required) or distributed (in that
moderate communication between neighboring controlled
units is required) to ensure scalability to future power grids
with a large number of actively controlled endpoints.

In this paper, we explore two different frequency control
strategies, both operating jointly from the generator and load
sides in a network with positive and zero inertia buses, to
address the two issues above. Applying a Lyapunov method
to the structure preserving model with nonlinear power flows,
we first establish the global asymptotic stability of a simple,
fully decentralized frequency integral controller. Then, to
achieve economic dispatch, we modify the decentralized
integral control by adding nearest-neighbor communication
to arrive at a distributed averaging-based integral (DAI)
control. The DAI control recovers nominal frequency with
minimum total cost of generation and user disutility for
participating in load control, after a change in generation
or load. Local asymptotic stability of DAI is proved us-
ing a Lyapunov method. Simulations of the IEEE 39-bus
test system demonstrate improvement in both transient and
steady-state performance achieved by using the two proposed
control strategies, compared to the traditional droop control.

The rest of this paper is organized as follows. Section II



describes the structure preserving model, introduces the con-
trol objective of economic dispatch, and connects equilibria
of the system to the solutions of economic dispatch. Section
III shows global asymptotic stability of the completely de-
centralized frequency integral control. Section IV proposes
the DAI control and proves its local stability. Section V is
a simulation-based case study to show the performance of
the proposed control strategies. Section VI concludes the
paper and discusses future work. Due to space limitation, we
provide only proof sketches and avoid detailed calculations.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

For a set N , let |N | denote its cardinality. A variable with
an underscore and a set as the subscript denotes a vector with
appropriate components, e.g., ωG = (ωj , j ∈ G) ∈ R|G|. A
variable with a set as the subscript but without an underscore
denotes a diagonal matrix with appropriate diagonal entries,
e.g., KG = diag(Kj , j ∈ G) ∈ R|G|×|G|. The subscript may
also be omitted when it denotes the set of all the nodes
or lines in the network. We use 1n or 0n to denote the
n-dimensional vector whose components are all 1 or all 0,
where the subscript n may be omitted when the number of
dimension is clear. Let AT denote the transpose of a matrix
A. The expression A � 0 (A ≺ 0) means the square matrix
A is positive (negative) definite. For a signal ω(t) of time t,
let ω̇ denote its time derivative dω/dt. The time index t is
usually dropped from equations when the meaning is clear.

Our analysis is based on the structure preserving model
[10]. The power network is modeled as an undirected graph
(N , E) where N = {1, . . . , |N |} is the set of buses (nodes)
and E ⊆ N ×N is the set of lines connecting those buses.
We use either (j, k) or (k, j) to denote the line connecting
buses j and k, i.e., if (j, k) ∈ E then (k, j) /∈ E . Notice
that the pair (j, k) ∈ E implicitly assumes a direction from j
to k. However, such an orientation is arbitrary and does not
affect the results of this paper. We assume the graph (N , E)
is connected, and make the following assumptions which are
well-justified for power transmission networks [1]:
• Bus voltage magnitudes |Vj | = 1 pu for j ∈ N .
• Lines (j, k) ∈ E are lossless and characterized by their

susceptances Bjk = Bkj > 0. We let Bjk = Bkj = 0
when (k, j) /∈ E and (j, k) /∈ E .

• Reactive power flows do not affect bus voltage phase
angles and frequencies.

A subset G ∈ N of the buses are generator-internal buses.
We call G the set of generators and L := N \ G the set of
load buses. We label all the buses so that G = {1, . . . , |G|}
and L = {|G|+ 1, . . . , |N |}. The voltage phase angle of bus
j ∈ N , with respect to the rotating framework of nominal
frequency ω0 = 2π · 60 Hz, is denoted by θj . Then

θ̇j = ωj j ∈ N (1)

is the frequency deviation from the nominal value on bus j.
The network dynamics are described by the swing equations

Mjω̇j =−Djωj+pj+uj−
∑
k∈N

Bjk sin(θj−θk) j ∈ G (2)

0 =−Djωj+pj+uj−
∑
k∈N

Bjk sin(θj−θk) j ∈ L (3)

where Mj > 0 are moments of inertia of generators, Dj > 0
are droop coefficients of generators when j ∈ G or linear
frequency dependent load coefficients when j ∈ L. The
exogenous input (pj , j ∈ N ) are uncontrollable real power
injections from, e.g., uncontrollable loads and renewable gen-
eration. The control variables (uj , j ∈ N ) are the mechanical
power inputs to generators for j ∈ G, respectively the flexible
demands of controllable loads for j ∈ L. The active power
flow from buses j to k is Bjk sin(θj − θk). Aside from
frequency dependent loads, the dynamics (3) also occur in
low-inertia power sources that are interfaced with the grid
through droop-controlled inverters [8], [25].

We are interested in frequency-synchronized solutions of
the model (1)–(3) satisfying θ̇j = ωj = ω∗ for some ω∗ ∈ R.
By summing over equations (2)(3) and evaluating ωj = ω∗,
we obtain the explicit synchronization frequency as

ω∗ =

∑
j∈N pj + uj∑
j∈N Dj

. (4)

Equation (4) implies that there is an equilibrium satisfying
ω∗ = 0 only if all power injections are balanced across the
entire network, i.e.,

∑
j∈N pj + uj = 0.

Our objective is, given exogenous input p ∈ R|N | to
the system (1)–(3), to design control law for u based on
feedback of states (θ, ω), such that the system converges to
an equilibrium (θ∗, ω∗= 0, u∗) which is at the same time a
solution to the following economic dispatch problem:
Economic Dispatch (ED):

min
θ,u

∑
j∈N

1

2
aju

2
j (5)

subject to

pj+uj−
∑
k∈N

Bjk sin(θj−θk) = 0 j ∈ N (6)

|θj − θk| ≤ γjk < π/2 (j, k) ∈ E . (7)

The terms 1
2aju

2
j in (5) are the generation cost (if j ∈ G) and

the user disutility for participating in load control (if j ∈ L),
where aj > 0 are constant coefficients. Indeed, quadratic
generation cost or user disutility functions are widely used,
e.g., in [8], [16]–[18], [21], [26]. The flow balance constraint
(6) ensures ω∗ = 0 as well as the existence of a synchronized
solution to the system (1)–(3). The thermal limit constraints
(7) restrict the line flows in the network. We shall make the
following assumption on the thermal limit constraints.

Assumption 1 (Strict Feasibility of ED): Any optimal so-
lution (θ∗, u∗) of ED satisfies the constraint (7) strictly, i.e.,

|θ∗j − θ∗k| < γjk <
π

2
(j, k) ∈ E . (8)

Assumption 1 essentially implies that the network is suffi-
ciently meshed, the transfer capacities are sufficiently large,
and generation and load are sufficiently well distributed so
that no line congestion occurs. In this case, the inequality
constraint (7) may be dropped, and by summing over all



equality constraints (6) we conclude that if (θ∗, u∗) is an
optimal solution of ED, then u∗ is a feasible solution for the

Reduced Economic Dispatch (RED):

min
u

∑
j∈N

1

2
aju

2
j (9)

subject to ∑
j∈N

pj+uj= 0. (10)

Notice that RED is a quadratic program subject to linear
constraint and thus convex. A comparison of the optimality
conditions for ED and RED leads to the following result for
strictly feasible solutions of ED.

Lemma 1 (Condition for optimality): Under Assumption
1, any strictly feasible solution (θ∗, u∗) of ED is an optimal
solution of ED if and only if it has identical marginal costs

aju
∗
j = aku

∗
k j, k ∈ N . (11)

Proof Sketch: (=⇒) The necessary Karush-Kuhn-Tucker
(KKT) conditions for optimality [27] imply that any primal-
dual optimal solution (θ∗, u∗;λ∗) must satisfy aju∗j = λ∗j =
λ∗ for all j ∈ N and some λ∗ ∈ R.

(⇐=) For any feasible solution (θ, u) of ED, u is a feasible
solution of RED. If we let opt(ED) and opt(RED) be the
optimal values of ED and RED respectively, it follows that

opt(RED) ≤ opt(ED).

Since (θ∗, u∗) satisfies (11), it is easy to show (by invoking
the KKT conditions for RED) that u∗ is an optimal solution
of the convex RED problem. Since (θ∗, u∗) is strictly feasible
for ED, it is an optimal solution of ED. �

The next proposition relates the power system dynamics
(1)–(3) with the ED optimization problem (5)–(7).

Proposition 1 (Optimality condition of equilibria):
Under Assumption 1, a frequency-synchronized solution
(θ∗, ω∗, u∗) of the system (1)–(3) is optimal for ED if and
only if the following conditions are satisfied:

ω∗j = 0 j ∈ N (12a)

|θ∗j − θ∗k| < γjk <
π

2
(j, k) ∈ E (12b)

aju
∗
j = aku

∗
k j, k ∈ N . (12c)

Proof: (=⇒) Suppose (θ∗, ω∗, u∗) is a frequency-
synchronized solution and (θ∗, u∗) is an optimal solution of
ED. Then (4) and (6) imply (12a). Under Assumption 1, we
have (12b). By Lemma 1 we have (12c).

(⇐=) Now suppose there is a frequency-synchronized
solution (θ∗, ω∗, u∗) satisfying (12). By (12a), the primal
feasibility condition (6) is satisfied by (θ∗, u∗). This, together
with (12b), guarantees the strict feasibility of (θ∗, u∗). By
Lemma 1, (θ∗, u∗) is optimal for ED since (12c) holds.

The remainder of the paper focuses on the following
question: how to achieve frequency recovery (12a) while
simultaneously achieving economic optimality (12c)?

III. COMPLETELY DECENTRALIZED
FREQUENCY INTEGRAL CONTROL

We first study the frequency integral controller

uj = −Kjsj (13a)
ṡj = ωj (13b)

which is completely decentralized in that every generator
and controllable load only needs to take the integral of
the frequency deviation measured on its local bus without
communication with other buses. The parameters Kj > 0 for
j ∈ N are constant control gains. Without loss of generality,
we take si(0) = 0, which allows us to rewrite (13) as

uj(t) = −Kj

∫ t

0

ωj(τ)dτ j ∈ N . (14)

We select arbitrary parameters K � 0 and input p, and fix
them in the rest of this section. Define

F (θ) := p−K(θ − θ0)− CBsin(CT θ) (15)

where θ0 := (θj(0), j ∈ N ) is a fixed vector of the
initial values of the phase angles. The matrices C and B
are again the network incidence matrix and the diagonal
matrix of susceptances Bjk, respectively, and the function
sin : R|E| → R|E| is defined such that if y = sin(δ) then
ye = sin(δe) for e ∈ E . Then the set of equilibria of the
closed-loop system (1)–(3) and (14) is

Θ∗ :=
{

(θ, ω) ∈ R2|N | | ω = 0, F (θ) = 0
}
. (16)

Theorem 1 below states the existence and global conver-
gence to this set of closed-loop equilibria.

Theorem 1: The set Θ∗ of equilibria is nonempty, and
every trajectory (θ(t), ω(t)) of the closed-loop system (1)–
(3) and (14) globally converges to Θ∗ as t→ +∞.

Proof Sketch: Consider the Lyapunov function

V (θ, ωG)=
1

2
ωTGMGωG+U(θ)+

∑
j∈N

Kjθj(
θj
2
−θ0,j) (17)

where the open-loop potential energy is

U(θ) :=
∑

(j,k)∈E

Bjk(1− cos(θj − θk))−
∑
j∈N

pjθj . (18)

The derivative of V along trajectories is obtained as

V̇ (θ, ωG) = −ωTGDGωG − ωTL(θ)DLωL(θ) ≤ 0 (19)

where ωL(θ) := D−1L FL(θ).
Now observe that V in (17)-(18) is radially unbounded due

to the dominating quadratic terms in θ. The claim follows
by appealing to LaSalle’s theorem [28, Theorem 4.4], and
the global convergence is due to radial unboundedness. �

Theorem 1 shows that the closed-loop system with con-
troller (14) globally converges to the set Θ∗ even in the
case where the open-loop system (1)–(3) (with u = 0) does
not have an equilibrium. When Θ∗ is composed by a finite
number of isolated equilibria, which occurs with measure one
on the set of system parameters [29], Theorem 1 implies that
the system will always converge to one of them.



Unfortunately, it is in general not possible to control the
final equilibrium to which the system will settle. In the next
theorem, we show that if certain conditions on the gains Kj

and line susceptances Bjk are satisfied, the set Θ∗ contains a
unique equilibrium which is globally asymptotically stable.

Theorem 2: If Kj > 2
∑
k∈N Bjk for all j ∈ N , then

the closed-loop system (1)–(3) and (14) has a unique and
globally asymptotically stable equilibrium.

Proof Sketch: Under the parametric condition, Gersh-
gorin’s circle theorem [30] shows that the Jacobian matrix
of F , denoted by ∂F

∂θ (θ), is strictly diagonally dominant and
negative definite for any θ ∈ R|N |. Suppose now that there
are θ, θ′ ∈ R|N | such that θ 6= θ′ and F (θ′) = F (θ) = 0.
Then by the fundamental theorem of calculus [31] we have

0 = F (θ′)− F (θ)

=

[∫ 1

0

∂F

∂θ
(θ + h∆θ)dh

]
∆θ (20)

where ∆θ := θ′ − θ 6= 0. The integral term in (20), denoted
by intF , is negative definite. Hence ∆θT · intF · ∆θ < 0
which contradicts (20). Thus, there is a unique equilibrium
in the non-empty set Θ∗. The global asymptotic stability of
this equilibrium follows from Theorem 1. �

The completely decentralized integral control success-
fully achieves global asymptotic stability without assuming
knowledge of the system parameters in the controller design.
To the best of our knowledge there is no other decentralized
control strategy for structure-preserving power network mod-
els that leads to a globally convergent closed-loop system.

However, the resulting equilibrium may be neither an
optimal nor a feasible solution of ED in Section II. Ad-
ditionally, our theoretical results require controllers at every
bus, and Theorem 2 requires large gains Kj , which may be
impractical and lead to large control actions and saturation.

While having ubiquitous controllers is still a limitation
of our design, in the next section we remedy the remaining
disadvantages by introducing a distributed control action that
corrects the steady-state solution and recovers optimality.

IV. DISTRIBUTED AVERAGING-BASED
INTEGRAL CONTROL

To simultaneously address the objectives of frequency
regulation and economic dispatch, we merge the integral
control (14) with a distributed consensus filter. Consider the
following distributed averaging-based integral (DAI) control

uj = −Kjsj −Rjqj j ∈ N (21a)
ṡj = ωj j ∈ N (21b)

q̇j = Qj
∑
k∈N

Yjk(ajuj − akuk) j ∈ N (21c)

where Kj , Rj , Qj > 0 for j ∈ N are control gains, and
the weights Yjk ≥ 0 for j, k ∈ N induce an undirected and
connected communication graph, i.e., Yjk = Ykj > 0 when
the local controllers at buses j and k communicate, otherwise
Yjk = Ykj = 0, and Yjj = 0 for j ∈ N .

Observe that (θ∗, ω∗, u∗) ∈ R3|N | is an equilibrium of the
closed-loop system (1)–(3) and (21) if and only if it satisfies

ω∗ = 0 (22a)
∇U(θ∗) = u∗ (22b)

u∗ = γA−11|N | (22c)

where U is defined in (18) and ∇U is its gradient, A :=
diag(aj , j ∈ N ), and γ := −

∑
j∈N pj/

∑
j∈N a

−1
j is a

normalization obtained by summing over equations (22b).
Hence (ω∗, u∗) exists and is unique. We make the follow-

ing assumption regarding the existence of θ∗ and its strict
feasibility for ED.

Assumption 2: Assume that the closed-loop system (1)–
(3) and (21) features a set of equilibria (θ∗, ω∗, u∗) that
satisfy (22) and (8).

In simulations we observe that the DAI control (21) is
stable for an arbitrary positive choice of control gains. We
choose the following particular control gains for our stability
analysis.

Assumption 3: We choose the following control gains:
Q = A and K = R = T−1A−1 with T being an arbitrary
diagonal and positive definite matrix.

We remark that with this choice of gains, the DAI control
(21) includes the DAPI control proposed in [8], [25] and a
related controller in [22] proposed for a linear flow model.
The controllers in [8], [25] makes the additional assumption
D = A−1 and merges the sum sj + qj in a single variable.

Theorem 3: Suppose that the ED problem in (5)–(7) sat-
isfies Assumption 1. Suppose that the closed-loop system
(1)–(3) and (21) has a nonempty set of equilibria as given in
Assumption 2, and the control gains are selected as in As-
sumption 3. Then these equilibria are locally asymptotically
stable and optimal for ED.

Proof Sketch: Consider the following auxiliary variable

y = −u ,

and choose the following incremental Lyapunov function
candidate inspired by [21]:

V (θ, ωG , y) =
1

2
ωTGMGωG + U(θ)− U(θ∗)

−∇U(θ∗)(θ−θ∗) +
1

2
(y−y∗)TAT (y−y∗).

The time derivative of V along any trajectory of the closed-
loop system (1)–(3) and (21) is

V̇ (θ, ωG , y) = −ωTGDGωG − (y − y∗)TALYA(y − y∗)

−
(
∇LU −∇LU∗ + yL − y

∗
L

)T
·D−1L

·
(
∇LU −∇LU∗ + yL − y

∗
L

)
,

where LY is the Laplacian matrix of the communica-
tion graph, and ∇LU and ∇LU∗ respectively denote the
subvectors of ∇U(θ) and ∇U(θ∗) composed only of the
components from set L. Hence V̇ is non-increasing. We
construct a strictly decreasing Lyapunov function by ap-
plying Chetaev’s trick [32] and adding the cross-term



Fig. 1. IEEE New England test system [33]. The red dashed lines represent
communication links between generators and controllable loads.

ε (∇GU(θ)−∇GU(θ∗))
T
MGωG to V for some sufficiently

small ε > 0. Consider now the augmented incremental
Lyapunov function

Ṽ (θ, ωG , y) = V (θ, ωG , y) + ε (∇GU −∇GU∗)T MGωG .

Its time derivative along any trajectory of the closed-loop
system (1)–(3) and (21) is obtained as

˙̃V (θ, ωG , y) = −


ωG

∇GU −∇GU∗
y − y∗

∇LU −∇LU∗


T

Q


ωG

∇GU −∇GU∗
y − y∗

∇LU −∇LU∗

 ,
where Q is a positive definite matrix for ε > 0 sufficiently
small. It follows that Ṽ is strictly decreasing outside the
equilibria. Since Ṽ is also locally positive definite with
respect to the equilibrium set satisfying |θ∗j − θ∗k| < π/2
for all (j, k) ∈ E , it follows that these equilibria are locally
asymptotically stable. Finally, it follows from Proposition 1
that these equilibria are also optimal for ED. �

V. SIMULATION CASE STUDY

In this section we evaluate the performance of the pro-
posed controllers using the IEEE New England test system
shown in Fig. 1. This system has 10 generators and 39 buses
and serves a total load of about 6 GW. The generator inertia
coefficients Mj and line susceptances Bjk are obtained from
the Power System Toolbox [33]. We choose uniform droop
coefficients Dj = 1 pu for all buses. Although our theoretical
analysis requires controllers at every bus of the network, here
we only control the generators and the loads on buses 3, 4, 7,
15, 16, 21, 23, 24, 26, 28, using uniform gains Kj = 60 pu
and Rj = 1 pu. For the DAI control, the communication
graph connecting generators and controllable loads is shown
in Fig. 1, with Yjk = 1 for all connected pairs (j, k). We
select the gains Qj = 50/deg(j) where deg(j) is the degree
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Fig. 2. Frequencies of generators 2, 4, 6, 8, 10, under droop control, the
completely decentralized integral control, and DAI.
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Fig. 3. Marginal costs ajuj for generators 2, 4, 6, 8, 10 and controllable
loads on buses 4, 15, 21, 24, 28, under the completely decentralized integral
control in (a) and the DAI control in (b).

of bus j in the communication graph. The economic dispatch
coefficients aj are generated uniformly randomly from [0, 1].

In the simulation, the system is initially at a supply-
demand balanced setpoint with 60 Hz frequency. At time
t = 1 second, buses 4, 12, 20 each makes a 33 MW step
change in real power consumption, causing bus frequencies
to drop. Figure 2 shows the frequencies of five generators,
under cases with different control schemes: droop control, the
completely decentralized integral control, and DAI. It can be
seen that while droop control synchronizes bus frequencies
θ̇j(t) to a value lower than 60 Hz, both the decentralized in-
tegral control and DAI recover bus frequencies to 60 Hz, with
similar transients. Figure 3 shows the trajectories of marginal
costs ajuj(t), under the completely decentralized integral
control and the DAI control. While at the equilibrium
of the decentralized integral control the marginal costs are
different across the generators and controllable loads, they
are the same under DAI, which, by Proposition 1, implies
that optimal economic dispatch is solved by DAI. Moreover,
for most of the displayed generators and controllable loads,
DAI reduces both transient and steady-state control actions
compared to the decentralized integral control.

In Fig. 4 we compare the objective values of economic
dispatch, i.e., total costs of control and a measure for the
control effort, along trajectories of control actions of the
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Fig. 4. Trajectories of economic dispatch objective for the completely
decentralized integral control and DAI. The blue dotted line shows the
minimum objective value of economic dispatch.

completely decentralized integral control and DAI, and com-
pare them with the minimum objective value of economic
dispatch for the given step change in load. We see that DAI
achieves a better transient performance, a smaller total cost
of control, as well as a more economic stead-steady state
compared to the decentralized integral control, and indeed
solves the economic dispatch problem at equilibrium.

VI. CONCLUSIONS

In this paper we proposed two control strategies — a
completely decentralized integral control and a distributed
averaging-based integral (DAI) control–that can be imple-
mented using generators, controllable loads, or low-inertia
sources. We showed that the decentralized integral con-
trol can achieve global asymptotic stability after arbitrary
changes in generation or load. However, the resulting equi-
librium may be neither optimal nor feasible for economic
dispatch. Thus, we proposed the DAI control, for which
local asymptotic stability of the closed-loop system was
proved. Simulations demonstrated that DAI preserves similar
convergence properties as the decentralized integral control,
and achieves the desired economic dispatch performance.
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[22] A. Jokić, M. Lazar, and P. Van den Bosch, “Real-time control of power
systems using nodal prices,” International Journal of Electrical Power
& Energy Systems, vol. 31, no. 9, pp. 522–530, 2009.

[23] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-
side primary frequency control in power systems,” IEEE Transactions
on Automatic Control, vol. 59, no. 5, pp. 1177–1189, 2014.

[24] E. Mallada, C. Zhao, and S. H. Low, “Optimal load-side control for
frequency regulation in smart grids,” in Proc. of Allerton Conference
on Communication, Control, and Computing, Monticello, IL, USA,
2014, pp. 731–738.

[25] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Synchronization and
power sharing for droop-controlled inverters in islanded microgrids,”
Automatica, vol. 49, no. 9, pp. 2603–2611, 2013.

[26] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in Proc. of IEEE Power and
Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1–8.

[27] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[28] H. K. Khalil and J. W. Grizzle, Nonlinear Systems, 3rd ed. Prentice
Hall, 2002.

[29] J. Baillieul and C. I. Byrnes, “Geometric critical point analysis of
lossless power system models,” IEEE Transactions on Circuits and
Systems, vol. 29, no. 11, pp. 724–737, 1982.
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