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Synchronization is a fundamental requirement of most networked engineering

applications. It enables the necessary coordination among agents required to

implement several communication systems as well as network protocols. De-

spite the great recent advances in understanding synchronization, a complete

synchronization theory is yet to be developed. This thesis presents a systematic

study of synchronization on distributed systems that covers theoretical guar-

antees for synchronization, performance analysis and optimization, as well as

design and implementation of algorithms.

We first present several theoretical results that deepen the understanding of

how coupling, delay and topology affect the behavior of a system of coupled

oscillators. We obtain a sufficient condition that can be used to check limit cycle

stability, and use it to characterize a family of coupling functions guarantee-

ing convergence to in-phase synchronization (phase consensus). The effect of

heterogeneous delay is then investigated by developing a new framework that

unveils the dependence of the orbit’s stability on the delay distribution. Finally,

we consider the effect of frequency heterogeneity. While coupled oscillators

with heterogeneous frequency cannot achieve phase consensus, we show that

a second order version of the system can achieve synchronization for arbitrary

natural frequencies and we relate the limiting frequency of the system to the

harmonic mean of the natural frequencies.



Based on the insight provided by our theoretical results, we then focus on

more practical aspects of synchronization in two particular areas: information

networks and power networks. Within information networks, we examine the

synchronization of computer clocks connected via a data network and propose

a discrete algorithm to synchronize them. Unlike current solutions, which ei-

ther estimate and compensate the frequency difference (skew) among clocks or

introduce offset corrections that can generate jitter and possibly even backward

jumps, this algorithm achieves synchronization without any of these problems.

We present a detailed convergence analysis together with a characterization of

the parameter values that guarantee convergence. We then study and optimize

the effect of noisy measurements and clock wander on the system performance

using a parameter dependent H2 norm. In particular, we show that the fre-

quency of the system drifts away from its theoretical value in the absence of a

leader. We implement the algorithm on a cluster of IBM BladeCenter servers

running Linux and we experimentally verify that our algorithm outperforms

the well-established solution. We also show that the optimal parameter values

depend on the network conditions and topology.

Finally, we study synchronization on power networks. By relating the dy-

namics of power networks to the dynamics of coupled oscillators, we can gain

insight into how different network parameters affect performance. We show

that the rate of convergence of networks is related to the algebraic connectivity

of a state dependent Laplacian which varies with the network power schedul-

ing and line impedances. This provides a novel method to change the voltage

stability margins by updating the power scheduling or line impedances. Un-

fortunately, there exists a decoupling between the market clearing procedure

used to dispatch power and the security analysis of the network, that prevents



the direct use of this solution. Furthermore, focusing on voltage stability may

generate other types of instabilities such as larger transient oscillations. This

motivates the use of a unifying stability measure that can minimize oscillations

or maximize voltage stability margins, and can be readily combined with cur-

rent dispatch mechanisms generating a dynamics-aware optimal power flow

formulation.
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Ferragut, Martı́n López, Diego Feijer and Marcos Cardozo. I will never forget

the fun, the hard work and willingness to prove that good research can be done

in a small country like ours.

I would also like to thank many friends that were in one way or another part

of this process. To my life friends from Uruguay, Martı́n Navia (Palo), Sebastián
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CHAPTER 1

INTRODUCTION

“Synchronicity is an ever present reality for those who have eyes to see.”

— Carl Jung

Synchronization is defined in its most general sense as the coordination of

events that allow a system to operate coherently. It is perhaps one of the most ubiq-

uitous phenomena in nature and science, and its study has widely attracted

the attention of researchers in various disciplines such as biology [1–5], chem-

istry [6, 7] and physics [8, 9]. Perhaps one of the most amazing aspects of syn-

chronization is that it appears to be instrumental in many biological and physi-

cal processes. For example, the in-phase synchrony of cells in the sinoatrial node

produces the heart contractions responsible for blood circulation [2], the spatial

patterns of oscillator chains control the motor patterns of many species [9, 10]

and epileptic seizures have been associated with the presence [11,12] or lack [13]

of neuron synchronous activity.

In engineering, synchronization has become a fundamental requirement of

many distributed applications. Time Division Multiple Access (TDMA) com-

munication systems need to be synchronized in order to coordinate transmis-

sions and decode messages within a network [14,15]. Energy efficient Medium

Access Control (MAC) protocols synchronize the sleep periods of the network

agents in order to save energy [16–18]. Data fusion of time sensitive measure-

ments in distributed estimation or tracking [19] uses synchronization to min-

imize estimation error. Also, collaborative transmission systems using space-

time coding [20] need synchronization in the transmission instants to properly

1



function.

However, besides its unusual pervasiveness, the most impressive aspect of

synchronization is its ability to emerge in large populations of interconnected

(coupled) oscillators without the presence of a specific leader or orchestrator.

1.1 Collective Synchronization

The study of collective synchronization can be traced back to Wiener [21] in

1958. But it was Winfree [22] who formulated the problem as a population of in-

teracting limit-cycle oscillators. In his work, Winfree realized that by assuming

weak coupling and making a time scale separation the dimension of the sys-

tem could be reduced to consider only the phase of each oscillator’s orbit. He

proposed the following system of N nonlinear differential equations to study

synchronization

φ̇i = ωi +
∑
j∈Ni

Hi j (φi, φ j ) ∀i ∈ {1, ...,N }. (1.1)

Here, φi is the phase of the ith oscillator, ωi is the natural frequency of oscilla-

tion, Hi j denotes the coupling function and Ni is the set of i’s neighbors. Using

equation (1.1) in the special case Hi j (φi, φ j ) = Z (φi)X (φ j ) and Ni = {1, ...,N }\{i},

plus some additional approximations, Winfree was able to characterize a critical

condition for the emergence of collective synchronization.

However, it was not until Kuramoto’s work [23] that a theory of collective

synchronization started to take shape. Building on Winfree’s work, Kuramoto

took the phase model provided by assuming weak coupling and used averaging

theory to modify equation (1.1) and obtain a coupling that is a function of the

2



phase difference

Hi j (φi, φ j ) = fi j (φ j − φi). (1.2)

Although equation (1.2) constitutes a significant simplification, the key contri-

bution of Kuramoto was to consider only the first term of the Fourier series of

the coupling function, i.e. fi j =
K
N sin, which provided analytical tractability.

Another closely related line of research comes from assuming pulse-like cou-

pling

Hi j (φi, φ j ) = κi j (φi)δ(φ j ) (1.3)

where δ is a Dirac’s delta function. It was first introduced by Peskin [2] in 1975

to study the pacemaker cells of the heart and it has since become a widely used

model for many biological processes [24, 25].

Equations (1.1), (1.2) and (1.3) constitute the starting point of different lines

of research. By assuming different distributions of ωi [26–29], taking the con-

tinuum limit on the number of oscillators [9, 30, 31] or choosing different com-

munication topologies [32–35] the possible behavior of such a system can be

complex and diverse. For example, the intrinsic symmetry of the network can

produce multiple limit cycles with relatively fixed phases (phase-locked trajec-

tories) [36], which in many cases can be stable [10]. Also, the heterogeneity in

the natural oscillation frequency can lead to incoherence [23] or even chaos [37].

One interesting question, in particular, is whether the coupled oscillators

will synchronize (phase lock) in the long run [24, 32, 38–40]. Besides its clear

theoretical value, it also has rich applications in practice. Unfortunately, cur-

rent results present several simplifying assumptions that hinder the potential

application of these models in real scenarios. For example, they either restrict

to simple topologies, such as complete graph or ring networks, or they assume

3



zero or bounded delay, homogeneous frequencies, or sin coupling. This is un-

satisfactory as in many applications these assumptions do not hold.

1.2 Synchronization on Information Networks

Keeping consistent time among different nodes in a network is central to many

distributed applications on information networks. Their internal clocks are usu-

ally not accurate enough and tend to drift apart from each other over time, gen-

erating inconsistent time values. This problem is known in engineering and

computer science as network clock synchronization. Its solution allows these

devices to correct their clocks to match a global reference of time, such as the

Universal Coordinated Time (UTC), by performing time measurements through

the network. For example, for the Internet, network clock synchronization has

been an important subject of research and several different protocols have been

proposed [41–47]. These protocols are used for various legacy and emerging

applications with diverse precision requirements such as banking transactions,

communications, traffic measurement and security protection. In particular, in

modern wireless cellular networks, time-sharing protocols need an accuracy of

several microseconds to guarantee the efficient use of channel capacity. Another

example is the recently announced Google Spanner [48], a globally-distributed

database, which depends on globally-synchronized clocks within at most sev-

eral milliseconds drifts.

The current de facto standard for IP networks, NTP [41], is a low-cost, purely

software-based solution, yet its accuracy mostly ranges from hundreds of mi-

croseconds to several milliseconds, which is often insufficient. On the other

4



hand, IEEE 1588 (PTP) [43] and IBM CCT [49] give superior performance

by achieving sub-microsecond or even nanosecond accuracy (for PTP). How-

ever, they are relatively expensive as they require special hardware support to

achieve those accuracy levels and may not be fully compatible with legacy clus-

ter systems.

There are three major difficulties that make the problem of network clock

synchronization challenging. Firstly, the frequency of hardware clocks is sen-

sitive to temperature, vibrations and interference, and thus constantly varies.

Secondly, the latency introduced by OS and network congestion delays results

in errors in the time measurements. Thirdly, these time errors can be amplified

as they propagate through the network. Thus, most protocols introduce differ-

ent ways of estimating the frequency mismatch (skew) [50, 51] and measuring

the time difference (offset) [52, 53] while maintaining a simple network topol-

ogy [41, 43].

However, despite the extensive work on this topic [47, 50, 54–57], there are

fundamental questions that remain unanswered. In particular, the vast liter-

ature on skew estimation [51, 58–60] for clock synchronization suggests that

precise estimation of the skew between clocks is needed in order to accurate

synchronize them. However, it is not known whether explicit skew estimation

is necessary or not.

Furthermore, there is no clear understanding of how network topology and

noise affect the synchronization performance. A common practice in the clock

synchronization community is to avoid timing loops in the network [41, p.

3] [43, p. 16, s. 6.2]. This is because timing loops are believed to induce in-

stability as stated in [41]: ”Drawing from the experience of the telephone industry,

5



which learned such lessons at considerable cost, the subnet topology... must never be

allowed to form a loop.” Yet to the best of our knowledge there is no theoretical

explanation of why and under what conditions loops can produce instability.

1.3 Electric Power Grid: The Largest Synchronized Network

Engineered

The american power grid has been regarded as the largest interconnected ma-

chine ever engineered by men [61]. Developed for over more than 100 years, it

is composed of thousands of interconnected generators that run exactly at the

same frequency, and delivers, through its transmission lines, electricity to hun-

dreds of millions of users. In other words, it is the largest synchronous system

built by men.

Its stability is one of the major concerns of every utility company. When a

blackout occurs, the resulting economic impact can cost between several hun-

dred millions of dollars and a few billion dollars [62–65]. Thus, utility operators

are constantly monitoring the network state in order to avoid the various types

of instabilities that a power grid might experience. These include, for instance,

voltage collapse/instability [66–68], small signal oscillations/instability [69–71]

and transient instability [72–74].

Different methods have been developed to assess and prevent each indi-

vidual stability problem. Voltage stability, for example, can be analyzed using

screening and ranking methods [75, 76] and continuation methods that inves-

tigate the available transfer capability of the current operating point [77–79].
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Small signal oscillations, on the other hand, are locally damped using Power

System Stabilizers (PSS) in the exciter control loop [71, 80–86] and globally

damped using either power electronics, such as Flexible AC Transmission Sys-

tem (FACTS) devices [70, 87–89], or using Phasor Measurement Unit’s (PMU’s)

information in the PSSs’ loop [86]. Finally, transient stability is analyzed using

time domain integration [90] or controlling unstable equilibrium point method-

ology [91, 92].

That said, in order to achieve economical sustainability, utility companies

seek to operate the network as efficiently as possible. Thus, every utility com-

pany tries to find the best power scheduling that minimizes their specific per-

formance metric (e.g. market welfare, losses, generation cost or voltage magni-

tudes) subject to physical and operational constraints. This problem is known

as the Optimal Power Flow (OPF) and it has a long history in the power sys-

tems community, dating back to at least 1962 with the seminal work of Carpen-

tier [93]. Nowadays, the OPF is a fundamental tool for defining prices and arbi-

trating electricity markets, and many different algorithms have been proposed

to solve OPF [94–97].

Unfortunately, there seems to be a gap between performance optimization

and stability assessment. For example, in order to perform the stability anal-

ysis, it is needed to first fix the power scheduling, which can be either a base

case obtained by the OPF or the result of a change in the system (e.g. fault or

demand fluctuation), and then studying the stability of the system. While the

effect of the scheduling on transient stability is not very clear -as it also depends

on the specific fault in consideration, the procedure used to clear it, and the time

needed to recover from it (fault clearing time) [98]-, it is certainly critical in volt-
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age stability and small signal oscillation studies because the voltage collapse

margins and stability of the operating point are directly influenced it.

In fact, many utility companies perform a day ahead detailed stability anal-

ysis based on historic records and predictions which is translated into line flow

constraints that aim to prevent the OPF from providing a solution that does not

meet the predefined stability margins [99–102]. This has two main problems.

Firstly, the additional constraints does not have a clear dynamical meaning that

can be used to indicate how robust is the current solution. Secondly, it is usu-

ally needed to introduce corrections on the scheduling that can generate market

inefficiencies.

In summary, this methodology is unable to contemplate the fact that these

two problems are intrinsically coupled. This problem has been identified

and studied over the last 15 years and several methods have been proposed

to include voltage stability constraints in the OPF problem [103–109]. How-

ever, adding small signal stability constraints has been a daunting task be-

cause it usually requires constraining several (if not all) eigenvalues of the sys-

tem [102, 110–112]. Furthermore, these procedures can sometimes have unde-

sired outcomes since there is a tradeoff between asymptotic rate of convergence

(max<[λi]) and transient amplitude. In other words, improving the asymptotic

rate of convergence can increase the amplitude of the oscillations.

1.4 Contributions of This Thesis

Motivated by engineering applications, this thesis focuses on the study of cou-

pled oscillators whose limiting behavior is phase-locked synchronization. That
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is, we study a population of oscillators that can lock themselves on a common

frequency φ̇i = ω
∗. We provide a systematic study of synchronization and how

it is affected by the different properties of the system, such as coupling, delay,

topology and frequency heterogeneity.

The key to the success of our analysis is based on first studying the sys-

tem with a simplified, yet not trivial, set of assumptions and progressively in-

creasing complexity. By moving from homogeneous frequency towards hetero-

geneous frequency, we leverage the results of the simpler scenario in order to

obtain similar theoretical guarantees in more general instances.

Similarly, we then focus on two specific applications. In both cases, we first

find a common ground that allows us to understand these problems using the

collective synchronization perspective given by the collective synchronization

theory, and then go beyond these idealized models in order to capture the spe-

cific challenges and engineering constraints that each application poses.

1.4.1 Coupled Oscillators

In essence, there are three key factors of a system of coupled oscillators that

characterize the interaction among oscillators: coupling, delay and topology. For

each of them, the existing work has mainly focused on special cases as explained

below. In chapter 2, further research is discussed on each of these three factors:

• Topology (whom to affect, section 2.2.2): Current results either restrict to

complete graph or ring topology for analytical tractability [32], study local

stability of topology independent solutions over time varying graph [113–
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115], or introduce dynamic controllers to achieve synchronization for

time-varying uniformly connected graphs [116, 117]. We develop a graph

based sufficient condition which can be used to check equilibrium stabil-

ity for any fixed topology. It also leads to a family of coupling functions

that guarantees that the system will reach global phase consensus for arbi-

trary undirected connected graph using only physically meaningful state

variables.

• Coupling (how to affect, section 2.2.3): The classical Kuramoto model [23]

assumes a sin() coupling function. Our study suggests that certain sym-

metry and convexity structures should be enough to guarantee global syn-

chronization.

• Delay (when to affect, section 2.3): Existing work generally assumes zero

delay among oscillators or requires them to be bounded up to a constant

fraction of the period [118]. This is clearly unsatisfactory especially if the

oscillating frequencies are high. We develop a new framework to study

unbounded delays by constructing a non-delayed phase model that is

equivalent to the original one. Using this result, we show that wider delay

distribution can help reach synchronization.

We then study the effect of heterogeneous natural frequencies in section 2.4.

While it is well-known that in-phase synchronization is no longer achievable,

we show that by adding an integrator to the dynamics it is possible leverage

the results on homogeneous oscillators to re-obtain phase consensus. More pre-

cisely, we prove that the same family of coupling functions characterized in the

homogenous case achieves global convergence toward the in-phase orbit for al-

most every initial condition, provided that all these orbits are isolated.
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1.4.2 Computer Clock Synchronization

Synchronization of computer clocks is studied in chapter 3. Although tempted

to use algorithms like the one proposed in section 2.4, neither of the solutions

is satisfactory as they require skew estimation or introduce offset corrections

that are undesired. We provide instead a simple algorithm that can compen-

sate the clock skew without any explicit estimation of it. Our algorithm only

uses current offset information and an exponential average of the past offsets.

Therefore, it neither requires storing long offset history nor does it perform time

consuming skew estimation. We analyze the convergence of the algorithm and

provide necessary and sufficient conditions for synchronization. The parameter

values that guarantee synchronization depend on the interconnection topology,

but there is a subset of these that is independent of it and therefore of great

practical interest.

We then study the interplay between noise and topology. We show that if

the measurements present biased noise, possibly due to queuing delays or for-

ward and backward paths asymmetries, then the system frequency drifts from

its theoretical value unless there is a leader1 in the communication topology.

We additionally characterize the effect of topology on the node’s mean offset

and optimize the system performance by finding a locally optimal set of pa-

rameters that minimizes the variance of linear performance metrics. We also

discover a rather surprising fact. Even though for some parameter values loops

can produce instability, we show that a proper selection of them can guaran-

tee convergence even in the presence of loops. Furthermore, we experimentally

demonstrate in section 3.5 that high connectivity between clients, as well as

1A node i is a leader of the system if and only if every node j has a path towards i and i has
no outgoing link
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properly selected parameter values, can actually help reduce the jitter of the

synchronization error!

1.4.3 Synchronization on Power Networks

Finally, we concentrate on the study of synchronization on power grids in chap-

ter 4. As discussed in section 1.3, there is an explicit relationship between the

network parameters and the system stability which is not easy to characterize.

We overcome this difficulty by using our coupled oscillators model from chap-

ter 2 and study the effect of network topology and parameters on the spectral

abscissa or asymptotic rate of convergence, i.e. max<[λi], of the structure pre-

serving power system model introduced in [119]. We first relate max<[λi] with

the algebraic connectivity of a state dependent weighted Laplacian [120] in sec-

tion 4.2. This evidences the interplay between voltage stability and network

topology. Then, in section 4.3, we use the implicit function theorem [121] to

explore the dependence of the algebraic connectivity on network parameters.

More specifically, we derive how power scheduling and line impedances affect

the operating point of the network and predict the net effect of these changes on

the algebraic connectivity. With these results, we provide updating rules that

can improve the asymptotic rate of convergence max<[λi] of a power network.

However, these results pose several questions. First, it is not clear whether

max<[λi] is an appropriate metric to measure power grids dynamic perfor-

mance. In fact, if one focuses entirely on the rate of convergence, the oscillation

of the system can increase. We overcome this problem in section 4.4 by using

a novel performance metric known as pseudo spectral abscissa, that can bal-
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ance transient amplitude and asymptotic convergence rate [122,123]. Using this

metric, we propose an optimization framework that imposes voltage and small

signal stability constraints on the OPF without explicitly computing and con-

straining the eigenvalues of the system, and also finds the performance limits

of the system.
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CHAPTER 2

SYNCHRONIZATION OF COUPLED OSCILLATORS

In this chapter we shall study coupled oscillators, which can be either pulse-

coupled or phase-coupled and are derived from assuming weak coupling. Al-

though most of the results are presented for phase-coupled oscillators, they can

be readily extended for pulse-coupled oscillators (see, e.g., [25,124]). It is worth

noting that results in sections 2.2 and 2.4 are independent of the strength of the

coupling and therefore do not require the weak coupling assumption

The chapter is organized as follows. We describe pulse-coupled and phase-

coupled oscillator models, as well as their common weak coupling approxima-

tion, in section 2.1. Using some facts from algebraic graph theory and potential

dynamics in section 2.2.1, we present the negative cut instability theorem in sec-

tion 2.2.2 to check whether an equilibrium is unstable. This leads to Theorem

2.1 in section 2.2.2, which identifies a class of coupling functions that are always

synchronized in phase with the system. It is well known that the Kuramoto

model produces global synchronization over a complete graph. In section 2.2.3,

we demonstrate that a large class of coupling functions, in which the Kuramoto

model is a special case, guarantee the instability of most of the limit cycles in a

complete graph network. Section 2.3 is devoted to the discussion of the effect of

delay. An equivalent non-delayed phase model is constructed whose coupling

function is the convolution of the original coupling function and the delay dis-

tribution. Using this approach, we show that sometimes more heterogeneous

delays among oscillators can help reach synchronization. Finally, we study the

effect of heterogenous frequencies in section 2.4. Although in this case in-phase

synchronization is no longer for coupled oscillators, we show that by adding
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an integrator in the loop together with a linear consensus term, phase consen-

sus is recovered. We also provide a global convergence result under the same

conditions of 2.2.2.

2.1 Model Description

We consider two different models of coupled oscillators studied in the literature.

The difference between the models arises in the way the oscillators interact, and

their dynamics can be quite different. However, when the interactions are weak

(weak coupling), both systems behave similarly and share the same approxima-

tion. This allows us to study them under a common framework.

Each oscillator is represented by a phase θi in the unit circle S1 which in the

absence of coupling moves with constant speed θ̇i = Ωi . Here, S1 represents the

unit circle, or equivalently the interval [0,2π] with 0 and 2π identified (0 ≡ 2π),

andΩi =
2π
Ti

denotes the natural frequency of the oscillation. We will assume that

the differences between the natural frequencies are of order ε, i.e. Ωi = ω + εωi,

for some scalar ε > 0, and that the frequency differences ωi have zero mean

(
∑N

i=1ωi = 0).

2.1.1 Pulse-coupled Oscillators

In this model, the interaction between oscillators is performed by pulses. An

oscillator j sends out a pulse whenever it crosses zero (θ j = 0). When oscillator i

receives a pulse, it will change its position from θi to θi+εκi j (θi). The function κi j

represents how the actions of other oscillators affect oscillator i, and the scalar
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ε > 0 is a measure of the coupling strength. These jumps can be modeled by a

Dirac’s delta function δ satisfying δ(t) = 0 ∀t , 0, δ(0) = +∞, and
∫
δ(s)ds = 1.

The coupled dynamics is represented by

θ̇i (t) = Ωi + ε
∑
j∈Ni

κi j (θi (t))Ω jδ(θ j (t − ηi j )), (2.1)

where ηi j > 0 is the propagation delay between oscillators i and j (ηi j = η ji),

and Ni is the set of i’s neighbors. The factor of Ω j in the sum is needed to

keep the size of the jump within εκi j (θi). This is because θ j (t) behaves like

Ω jt when crosses zero and therefore the jump produced by δ(θ j (t)) is of size∫
δ(θ j (t))dt = Ω−1

j [25].

The coupling function κi j can be classified based on the qualitative effect it

produces in the absence of delay. After one period, if the net effect of the mutual

jumps brings a pair of oscillators closer, we call it attractive coupling. If the

oscillators are brought further apart, it is considered to be repulsive coupling.

The former can be achieved, for instance, if κi j (θ) ≤ 0 for θ ∈ [0, π) and κi j (θ) ≥ 0

for θ ∈ [π,2π). See Figure 2.1 for an illustration of an attractive coupling κi j and

its effect on the relative phases.

This pulse-like interaction between oscillators was first introduced by Pe-

skin [2] in 1975 as a model of the pacemaker cells of the heart, although its

canonic form did not appear in the literature until 1999 [25]. In general, when

the number of oscillators is large, there are several different limit cycles besides

the in-phase synchronization and many of them can be stable [10].

The question of whether this system can collectively achieve in-phase syn-

chronization was answered for the complete graph case and zero delay by

Mirollo and Strogatz in 1990 [24]. They showed that if κi j (θ) is strictly increasing
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Figure 2.1: Pulse-coupled oscillators with attractive coupling.

on (0,2π) with a discontinuity in 0 (which resembles attractive coupling), then

for almost every initial condition, the system can synchronize in phase in the

long run.

The two main assumptions of [24] are all to all communication and zero

delay. Whether in-phase synchronization can be achieved for arbitrary graphs

has been an open problem for over twenty years. On the other hand, when

delay among oscillators is introduced the analysis becomes intractable. Even

for the case of two oscillators, the number of possibilities to be considered is

large [125, 126].

2.1.2 Phase-coupled Oscillators

In the model of phase-coupled oscillators, the interaction between neighboring

oscillators i and j ∈ Ni is modeled by change of the oscillating speeds. Although

in general the speed change can be a function of both phases (θi, θ j ), we concen-

trate on the case where the speed change is a function of the phase differences
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fi j (φ j (t − ηi j ) − φi (t)). Thus, since the net speed change of oscillator i amounts

to the sum of the effects of its neighbors, the full dynamics is described by

φ̇i (t) = Ωi + ε
∑
j∈Ni

fi j (φ j (t − ηi j ) − φi (t)). (2.2)

The function fi j is usually called coupling function, and as before ηi j represents

delay and Ni is the set of neighbors of i.

Figure 2.2: Phase-coupled oscillators with attractive and repulsive cou-
pling.

A similar definition for attractive and repulsive couplings can be done in

this model. We say that the coupling function fi j is attractive if, without de-

lays, the change in speeds brings oscillators closer, and repulsive if they are

brought apart. Figure 2.2 shows typical attractive and repulsive coupling func-

tions where arrows represent the speed change produced by the other oscillator;

if the pointing direction is counter clockwise, the oscillator speeds up, and oth-

erwise it slows down.

When fi j =
K
N sin(), K > 0 (attractive coupling), this model is known as

the classical Kuramoto model [127]. Intensive research has been conducted on

this model, but convergence results are usually limited to cases with all to all
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coupling (Ni = N\{i}, i.e., complete graph topology) and no delay (ηi j = 0), see

e.g. [32, 128], or to some regions of the state space [118].

2.1.3 Weak Coupling Approximation

We now concentrate on the regime in which the coupling strength of both mod-

els is weak, i.e. 1 � ε > 0. For pulse-coupled oscillators, this implies that the

effect of the jumps originated by each neighbor can be approximated by their

average [124]. For phase-coupled oscillators, it implies that to the first order

φi (t − ηi j ) is well approximated by φi (t) − ωηi j .

The effect of these approximations allows us to completely capture the be-

havior of both systems using the following equation

φ̇i = εωi + ε
∑
j∈Ni

fi j (φ j − φi − ψi j ). (2.3)

where we know that φi is the phase of a rotating frame of speed ω and we only

keep track of the slow time scale of order 1
ε . Furthermore, since ε multiplies both

terms on the right hand side of (2.3), we will drop it without loss of generality.

That is, we will consider

φ̇i = ωi +
∑
j∈Ni

fi j (φ j − φi − ψi j ). (2.4)

For pulse-coupled oscillators, the coupling function is given by

fi j (θ) =
ω

2π
κi j (−θ), (2.5)

and the phase lag ψi j = ωηi j represents the distance that the phase of oscillator

i can travel along the unit circle during the delay time ηi j . Equation (2.5) also
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shows that the attractive/repulsive coupling classification of both models is in

fact equivalent, since in order to produce the same effect κi j and fi j should be

mirrored, as illustrated in Figure 2.1 and Figure 2.2.

Equation (2.4) captures the relative change of the phases and therefore any

solution to (2.4) can be immediately translated to either (2.1) or (2.2) by rescaling

time and adding ωt. For example, if φ∗ is an equilibrium of (2.4), by adding ωt,

we obtain a limit cycle in the previous models. Besides the delay interpretation

for ψi j , (2.4) is also known as a system of coupled oscillators with frustration, see

e.g. [129].

From now on we will concentrate on (2.4) with the understanding that any

convergence result derived will be immediately true for the original models in

the weak coupling limit. We are interested in the attracting properties of phase-

locked invariant orbits within T N , which can be represented by

φ(t) = ω∗t1N + φ∗, (2.6)

where 1N = (1, . . . ,1)T ∈ T N , and φ∗ and ω∗ are solutions to

ω∗ = ωi +
∑
j∈Ni

fi j (φ∗j − φ
∗
i − ψi j ), ∀i. (2.7)

Whenever the system reaches one of these orbits, we say that it is synchronized

or phase-locked. If all the elements of φ∗ are equal, we say the system is syn-

chronized in-phase or that it is in-phase locked.

Moreover, if φ∗ is an equilibrium of (2.4), any solution of the form φ∗ + λ1N ,

with λ ∈ R, is also an equilibrium that identifies the same limit cycle on the

original system. Therefore, two equilibria φ1,∗ and φ2,∗ will be considered to be

equivalent, if both identify the same orbit, or equivalently, if both belong to the
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same connected set of equilibria

Eφ∗ := {φ ∈ T N |φ = φ∗ + λ1N , λ ∈ R}. (2.8)

In the next two sections (section 2.2 and section 2.3) we will assume that

the natural frequency is homogeneous among the population of oscillators, i.e.

Ωi = ω ∀i and ωi = 0.

2.2 Effect of Topology and Coupling

In this section, we concentrate on the class of coupling functions fi j that are

symmetric ( fi j = f ji ∀i j), odd ( fi j (−θ) = − fi j (θ)) and continuously differen-

tiable. We also assume that there is no delay within the network (ψi j = 0 ∀i j).

Thus, (2.4) reduces to

φ̇i =
∑
j∈Ni

fi j (φ j − φi). (2.9)

In the rest of this section, we progressively show how with some extra con-

ditions on fi j we can guarantee in-phase synchronization for arbitrary undi-

rected graphs. Since the network can have many other phase-locked trajectories

besides the in-phase one, our target is an almost global stability result [130],

meaning that the set of initial conditions that does not eventually lock in-phase

has zero measure. Later we show how most of the phase-locked solutions that

appear on a complete graph are unstable under some general conditions on the

structure of the coupling function.
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2.2.1 Preliminaries

We now introduce some prerequisites used in our later analysis.

Algebraic Graph Theory

We start by reviewing basic definitions and properties from graph theory [131,

132] that are used in this chapter. Let G be the connectivity graph that describes

the coupling configuration. We use V (G) and E(G) to denote the set of vertices

(i or j) and undirected edges (e) of G. An undirected graph G can be directed

by giving a specific orientation σ to the elements in the set E(G). That is, for

any given edge e ∈ E(G), we designate one of the vertices to be the head and the

other to be the tail giving Gσ.

Although in the definitions that follow we need to give the graph G a given

orientation σ, the underlying connectivity graph of the system is assumed to be

undirected. This is not a problem as the properties used here are independent

of a particular orientation σ and therefore they are properties of the undirected

graph G. Thus, to simplify notation we drop the superscript σ from Gσ with

the understanding that G is now an induced directed graph with some fixed,

but arbitrarily chosen, orientation.

We use P = (V−,V+) to denote a partition of the vertex set V (G) such that

V (G) = V−∪V+ and V−∩V+ = ∅. The cut C(P) associated with P, or equivalently

C(V−,V+), is defined as C(P) := {i j ∈ E(G) |i ∈ V−, j ∈ V+, or vice versa.}. Each

partition can be associated with a vector column cP where cP(e) = 1 if e goes

form V− to V+, cP(e) = −1 if e goes form V+ to V− and cP(e) = 0 if e stays within

either set.
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There are several matrices associated with the oriented graph G that embed

information about its topology. However, the one with most significance to this

work is the oriented incidence matrix B ∈ R|V (G) |× |E(G) | where B(i,e) = 1 if i is the

head of e, B(i,e) = −1 if i is the tail of e and B(i,e) = 0 otherwise.

Potential Dynamics

We now describe how our assumptions on fi j not only simplify the dynamics

considerably but also allow us to use the graph theory properties introduced in

Section 2.2.1 for a deeper understanding of (2.4).

While fi j being continuously differentiable is a standard assumption to

study local stability and it is sufficient to apply LaSalle’s invariance princi-

ple [133], the symmetry and odd assumptions have a stronger effect on the dy-

namics.

For example, under these assumptions the system (2.9) can be compactly

rewritten in a vector form as

φ̇ = −BF (BTφ) (2.10)

where B is the adjacency matrix defined in Section 2.2.1 and the map F : E (G) →

E (G) is

F (y) = ( fi j (yi j ))i j∈E(G) .

This new representation has several properties. First, from the properties

of B one can easily show that (2.7) can only hold with ω∗ = 0 for arbitrary

graphs [38] (since Nω∗ = ω∗1T
N1N = −1

T
N BF (BTφ) = 0), which implies that every
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phase-locked solution is an equilibrium of (2.9) and that every limit cycle of the

original system (2.4) can be represented by some E∗φ on (2.9).

However, the most interesting consequence of (2.10) comes from interpreting

F (y) as the gradient of a potential function

V (y) =
∑

i j∈E(G)

∫ yi j

0
fi j (s)ds.

Then, by evaluating it at BTφ, (2.10) becomes a gradient descent law for V (BTφ),

i.e.,

φ̇ = −BF (BTφ) = −B∇V (BTφ) = −∇(V ◦ BT )(φ).

This makes V (BTφ) a natural Lyapunov function candidate since

V̇ (BTφ) = 〈∇(V ◦ BT )(φ), φ̇〉 = − ���∇(V ◦ BT )(φ)���
2
= −

���φ̇���
2
≤ 0. (2.11)

Furthermore, since the trajectories of (2.10) are constrained into the N-

dimensional torus T N , which is compact, V (BTφ) satisfies the hypothesis of

LaSalle’s invariance principle (Theorem 4.4 [133]), i.e. there is a compact posi-

tively invariant set, T N and a function V ◦BT : T N → R that decreases along the

trajectories φ(t). Therefore, for every initial condition, the trajectory converges

to the largest invariant set M within {V̇ (BTφ) ≡ 0} which is the equilibria set

E = {φ ∈ T N |φ̇ ≡ 0} =
⋃
φ∗ Eφ∗ .

Remark 2.1. The fact that symmetric and odd coupling induces potential dynamics is

well know in the physics community [134]. However, it has also been rediscovered in

the control community [39] for the specific case of sine coupling. Clearly, this is not

enough to show almost global stability, since it is possible to have other stable phase-

locked equilibrium sets besides the in-phase set. However, if we are able to show that all

the non-in-phase equilibria are unstable, then almost global stability follows. That is the

focus of the next section.
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2.2.2 Negative Cut Instability Condition

We now present the main results of this section. Our technique can be viewed

as a generalization of [32]. By means of algebraic graph theory, we provide a

better stability analysis of the equilibria under a more general framework. We

also use the new stability results to characterize fi j that guarantees almost global

stability.

Local Stability Analysis

In this section, we develop the graph theory based tools to characterize the sta-

bility of each equilibrium. We will show that given an equilibrium φ∗ of the

system (2.10), with connectivity graph G and fi j as described in this section. If

there is a cut C(P) such that the sum∑
i j∈C(P)

f ′i j (φ
∗
j − φ

∗
i ) < 0, (2.12)

the equilibrium φ∗ is unstable.

Consider first an equilibrium point φ∗. Then, the first order approximation

of (2.10) around φ∗ is

δφ̇ = −L(w(φ∗))δφ

were δφ = φ − φ∗ is the incremental phase variable, and

L(w(φ∗)) := Bdiag[w(φ∗)]BT (2.13)

is a state dependent Laplacian matrix L(w(φ∗)) ∈ R|V (G) |× |V (G) |, (w(φ∗))i j =

f ′i j (φ
∗
j − φ

∗
i ) and diag[w(φ∗)] := ∂

∂y F (BTφ∗) ∈ R|E(G) |× |E(G) | is the Jacobian of F (y)

evaluated at BTφ∗.
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Now let A = −L(w(φ∗)) and consider the linear system δφ̇ = Aδφ. Although

it is possible to numerically calculate the eigenvalues of A given φ∗ to study the

stability, here we use the special structure of A to provide a sufficient condition

for instability that has nice graph theoretical interpretations.

Since A is symmetric, it is straight forward to check that A has at least one

positive eigenvalue, i.e. φ∗ is unstable, if and only if xT Ax > 0. Now, given any

partition P = (V−,V+), consider the associated vector cP, define xP such that

xi =
1
2 if i ∈ V+ and xi = −

1
2 if i ∈ V−. Then it follows from the definition of B

that cP = BT xP which implies that

−xT
P AxP = cT

Pdiag[w(φ∗)]cP =
∑

i j∈C(P)

f ′i j (φ
∗
j − φ

∗
i ).

Therefore, when condition (2.12) holds, A = −L(w(phi∗)) has at least one

eigenvalue whose real part is positive.

Remark 2.2. Equation (2.12) provides a sufficient condition for instability; it is not

clear what happens when (2.12) does not hold. However, it gives a graph-theoretical

interpretation that can be used to provide stability results for general topologies. That

is, if the minimum cut cost is negative, the equilibrium is unstable.

Remark 2.3. Since the weights of the graph f ′i j (φ
∗
j − φ

∗
i ) are functions of the phase

difference, (2.12) holds for any equilibria of the form φ∗ + λ1N . Thus, the result holds

for the whole set Eφ∗ defined in (2.8).

When (2.12) is specialized to P = ({i},V (G)\{i}) and fi j (θ) = sin(θ), it reduces

to the instability condition in Lemma 2.3 of [32]; i.e.,

∑
j∈Ni

cos(φ∗j − φ
∗
i ) < 0. (2.14)
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However, (2.12) has a broader applicability spectrum as the following example

shows.

Example 2.1. Consider a six oscillators network as in Figure 2.3, where each node is

linked to its four closest neighbors and fi j (θ) = sin(θ). Then, by symmetry, it is easy to

verify that

φ∗ =
[
0,
π

3
,
2π

3
, π,

4π

3
,
5π

3

]T
(2.15)

is an equilibrium of (2.9).

Figure 2.3: The network of six oscillators (Example 4)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

 

 1 2 3 4 5 6

t

φi

π

Figure 2.4: Unstable equilibrium φ∗. Initial condition φ0 = φ
∗ + δφ

We first study the stability of φ∗ using (2.14) as in [32]. By substituting (2.15) in

cos(φ∗j − φ
∗
i ) ∀i j ∈ E(G) we find that the edge weights can only take two values:

cos(φ∗j − φ
∗
i ) =


cos( π3 ) = 1

2 , if j = i ± 1 mod 6

cos( 2π
3 ) = − 1

2 , if j = i ± 2 mod 6
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Then, since any cut that isolates one node from the rest (like C1 = C({1},V (G)\{1}) in

Figure 2.3) will always have two edges of each type, their sum is zero. Therefore, (2.14)

cannot be used to determine stability.

If we now use condition (2.12) instead, we are allowed to explore a wider variety

of cuts that can potentially have smaller costs. In fact, if instead of C1 we sum over

C2 = C({1,2,6}, {3,4,5}), we obtain,

∑
i j∈C2

cos(φ∗j − φ
∗
i ) = −1 < 0,

which implies that φ∗ is unstable.

Figure 2.4 verifies the equilibrium instability. By starting with an initial condition

φ0 = φ∗ + δφ close to the equilibrium φ∗, we can see how the system slowly starts to

move away from φ∗ towards a stable equilibrium set.

Furthermore, we can study the whole family of non-isolated equilibria given by

φ∗ =
[
ε1,

π

3
+ ε2,

2π

3
+ ε3, π + ε1,

4π

3
+ ε2,

5π

3
+ ε3

]T
(2.16)

where ε1, ε2, ε3 ∈ R, which due to Remark 2.3, we can reduce (2.16) to

φ∗ =
[
0,
π

3
+ λ1,

2π

3
+ λ2, π,

4π

3
+ λ1,

5π

3
+ λ2

]T
(2.17)

with λ1 = ε2 − ε1 and λ2 = ε3 − ε1.

Instead of focusing on only one cut, here we compute the minimum cut value (2.12)

over the 31 possible cuts, i.e. C∗(λ1, λ2) := minP
∑

i j∈C(P) f ′i j (φ j (λ1, λ2)∗−φ∗i (λ1, λ2)).

Figure 2.5 shows the value of C∗(λ1, λ2) for λi ∈ [−π,π]. Since C∗(λ1, λ2) is 2π-

periodic on each variable and its value is negative for every λ1, λ2 ∈ [−π,π], the family

of equilibria (2.17) (and consequently (2.16)) is unstable.
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Figure 2.5: Minimum cut value C∗(λ1, λ2) showing that the equilibria
(2.16) are unstable

Almost Global Stability

Condition (2.12) also provides insight on which class of coupling functions can

potentially give us almost global convergence to the in-phase equilibrium set

E1N . If it is possible to find some fi j with f ′i j (0) > 0, such that for any non-

in-phase equilibrium φ∗, there is a cut C with
∑

i j∈C f ′i j (φ
∗
j − φ

∗
i ) < 0, then the

in-phase equilibrium set will be almost globally stable [10]. The main difficulty

is that for general fi j and arbitrary network G, it is not easy to locate every

phase-locked equilibria and it is therefore hard to know in what region of the

domain of fi j the slope should be negative.

We now concentrate on the one-parameter family of functions Fb.

Definition 2.1. fi j (θ; b) is a member of Fb in and only if:

• Symmetric ( fi j = f ji ∀i j), odd ( fi j (−θ) = − fi j (θ)) and continuously differen-

tiable ( fi j ∈ C1)

• f ′i j (θ; b) > 0, ∀θ ∈ (0,b) ∪ (2π − b,2π), and

• f ′i j (θ; b) < 0, ∀θ ∈ (b,2π − b).
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See Figure 2.6 for an illustration with b = π
2 and π

6 . Also note that this def-

inition implies that if fi j (θ; b) ∈ Fb, the coupling is attractive and fi j (θ; b) > 0

∀θ ∈ (0, π). This last property will be used later. We also assume the graph G to

be connected.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

θ
 

 

b = π
2

b = π
6fij

π
6

π
2

Figure 2.6: Coupling function fi j ∈ Fb for b = π
2 and b = π

6

In order to obtain almost global stability we need b to be small. However,

since the equilibria position is not known a priori, it is not clear how small b

should be or if there is any b > 0 such that all nontrivial equilibria are unstable.

We therefore need to first estimate the region of the state space that contains

every non-trivial phase-locked solution.

Let I be a compact connected subset of S1 and let l (I) be its length, e.g., if

I = S1 then l (I) = 2π. For any S ⊂ V (G) and φ ∈ T N , define d(φ,S) as the length

of the smallest interval I such that φi ∈ I ∀i ∈ S, i.e.

d(φ,S) = l (I∗) = min
I:φi∈I, ∀i∈S

l (I).

Using this metric, together with the aid of Theorem 2.6 of [38] we can iden-

tify two very insightful properties of the family Fb whenever the graph G is

connected.
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Lemma 2.1. If φ∗ is an equilibrium point of (2.10) with d(φ∗,V (G)) ≤ π, then either φ∗

is an in-phase equilibrium, i.e. φ∗ = λ1N for λ ∈ R, or has a cut C with f ′i j (φ
∗
j −φ

∗
i ) < 0

∀i j ∈ C.

Proof. Since d(φ∗,V (G)) ≤ π, all the phases are contained in a half circle and for

the oscillator with smallest phase i0, all the phase differences (φ∗j − φ
∗
i0

) ∈ [0, π].

However, since fi j (·; b) ∈ Fb implies fi j (θ; b) ≥ 0 ∀θ ∈ [0, π] with equality only

for θ ∈ {0, π}, φ̇∗i0 =
∑

j∈Ni0
fi j (φ∗j − φ

∗
i0

) = 0 can only hold if φ∗j − φ
∗
i0
∈ {0, π}

∀ j ∈ Ni0 . Now let V− = {i ∈ V (G) : d(φ∗, {i, i0}) = 0} and V+ = V (G)\V−. If

V− = V (G), then φ∗ is an in-phase equilibrium. Otherwise, ∀i j ∈ C(V−,V+),

f ′i j (φ
∗
j − φ

∗
i ) = f ′i j (π) < 0.

We are now ready to establish a bound on the value of b that guarantees the

instability of the non-in-phase equilibria.

Lemma 2.2. Consider fi j (·; b) ∈ Fb ∀i j ∈ E(G) and arbitrary connected (undirected)

graph G. Then for any b ≤ π
N−1 and non-in-phase equilibrium φ∗, there is a cut C with

f ′i j (φ
∗
j − φ

∗
i ; b) < 0,∀i j ∈ C

Proof. Suppose there is a non-in-phase equilibrium φ∗ for which no such cut C

exists. Let V−0 = {i0} and V+
0 = V (G)\{i0} be a partition of V (G) for some arbitrary

node i0.

Since such C does not exist, there is some edge i0 j1 ∈ C(V−0 ,V
+
0 ), with j1 ∈

V+
0 , such that f ′i0 j1

(φ∗j1 − φ
∗
i0

; b) ≥ 0. Move j1 from one side to the other of the

partition by defining V−1 := V−0 ∪ { j1} and V+
1 := V+

0 \{ j1}. Now since f ′i0 j1
(φ∗j1 −

φ∗i0 ; b) ≥ 0, then

d(φ∗,V−1 ) ≤ b.
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In other words, both phases should be within a distance smaller than b.

Now repeat the argument k times. At the kth iteration, given V−k−1, V+
k−1,

again we can find some ik−1 ∈ V−k−1, jk ∈ V+
k−1 such that ik−1 jk ∈ C(V−k−1,V

+
k−1) and

f ′ik−1 jk
(φ∗jk − φ

∗
ik−1

; b) ≥ 0. Also, since at each step d(φ∗, {ik−1, jk }) ≤ b,

d(φ∗,V−k ) ≤ b + d(φ∗,V−k−1).

Thus by solving the recursion we get: d(φ∗,V−k ) ≤ kb.

After N − 1 iterations we have V−N−1 = V (G) and d(φ∗,V (G)) ≤ (N − 1)b.

Therefore, since b ≤ π
N−1 , we obtain

d(φ∗,V (G)) ≤ (N − 1)
π

N − 1
= π.

Then, by Lemma 2.1 φ∗ is either an in-phase equilibrium or there is a cut C with

f ′i j (φ
∗
j − φ

∗
i ) < 0 ∀i j ∈ C. Either case gives a contradiction to assuming that φ∗ is a

non-in-phase equilibrium and C does not exist. Therefore, for any non-in-phase

φ∗ and b ≤ π
N−1 , we can always find a cut C with f ′i j (φ

∗
j − φ

∗
i ; b) < 0, ∀i j ∈ C.

Lemma 2.2 allows us to use our cut condition (2.12) on every non-in-phase

equilibrium. Thus, since (2.10) is a potential dynamics (c.f. section 2.2.1), from

every initial condition the system converges to the set of equilibria E. But when

b ≤ π
N−1 the only stable equilibrium set inside E is the in-phase set E1N . Thus,

E1N set is globally asymptotically stable. We have summarized this result in the

following Theorem.

Theorem 2.1 (Almost global stability). Consider fi j (θ; b) ∈ Fb and an arbitrary

connected graph G. Then, if b ≤ π
N−1 , the in-phase equilibrium set E1N is almost

globally asymptotically stable.
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This result provides a sufficient condition for almost global asymptotic sta-

bility to the in-phase equilibrium set E1N . Although found independently, the

same condition was proposed for a specific piecewise linear fi j in [135]. Here we

extend [135] in many aspects. For example, instead of assuming equal coupling

for every edge, our condition describes a large family of coupling functions Fb

where each fi j can be taken independently from Fb. Also, in [135] the construc-

tion of fi j (θ) assumes a discontinuity on the derivative at θ = b. This can pose

a problem if the equilibrium φ∗ happens to have phase differences φ∗j − φ
∗
i = b.

Here we do not have such problem as fi j is continuously differentiable.

The condition b ≤ π
N−1 implies that, when N is large, fi j should be decreasing

in most of it domain. Using (2.5) this implies that κi j should be increasing within

the region (b,2π − b), which is similar to the condition on [24] and equivalent

when b → 0. Thus, Theorem 2.1 confirms the conjecture of [24] by extending

their result to arbitrary topologies and a more realistic continuous κi j for the

system (2.1) in the weak coupling limit.

2.2.3 Complete Graph Topology with a Class of Coupling Func-

tions

In this subsection, we investigate how conservative the value of b found in sec-

tion 2.2.2 is for the complete graph topology. We are motivated by the results

of [32] where it is shown that f (θ) = sin(θ) (b = π
2 ) with complete graph topol-

ogy ensures almost global synchronization.

Since for general f it is not easy to characterize all the possible equilibria of
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the system, we study the stability of the equilibria that appear due to the equiv-

alence of (2.10) with respect to the action group SN × T1, where SN is the group

of permutations of the N coordinates and T1 = [0,2π) represents the group ac-

tion of phase shift of all the coordinates, i.e. the action of δ ∈ T1 is φi 7→ φi + δ

∀i. We refer the readers to [36] and [38] for a detailed study of the effect of this

property.

These equilibria are characterized by the isotropy subgroups Γ of SN ×T1 that

keep them fixed, i.e., γφ∗ = φ∗ ∀γ ∈ Γ. In [36] it was shown that this isotropy

subgroup takes the form of

(Sk0 × Sk1 × · · · × SklB−1 )m o Zm

where ki and m are positive integers such that (k0+k1+· · ·+klB−1)m = N , Sj is the

permutation subgroup of SN of j-many coordinates and Zm is the cyclic group

with action φi 7→ φi + 2π
m . The semiproduct o represents the fact that Zm does

not commute with the other subgroups. In other words, each equilibria with

isotropy (Sk0 × Sk1 × · · · × SklB−1 )m o Zm is conformed by lB shifted constellations

Cl (l ∈ {0,1, . . . lB − 1}) of m evenly distributed blocks, with kl oscillators per

block. We use δl to denote the phase shift between constellation C0 and Cl . See

Figure 2.7 for examples of these types of equilibria.

Figure 2.7: Equilibria with isotropy (Sk0×Sk1×Sk2 )4oZ4 (left) and (Sk )8oZ8

(right)
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Here we will show that under mild assumptions on f and for b = π
2 , most

of the equilibria found with these characteristics are unstable. We first study all

the equilibria with m even. In this case there is a special property that can be

exploited.

That is, when f ∈ Fπ
2

such that f is even around π
2 , we have

gm(δ) :=
m−1∑
j=0

f (
2π

m
j + δ) (2.18)

=

m/2−1∑
j=0

f (
2π

m
j + δ) + f (π +

2π

m
j + δ)

=

m/2−1∑
j=0

f (
2π

m
j + δ) + f ((

3π

2
+

2π

m
j + δ) −

π

2
)

=

m/2−1∑
j=0

f (
2π

m
j + δ) + f (−(

2π

m
j + δ))

=

m/2−1∑
j=0

f (
2π

m
j + δ) − f (

2π

m
j + δ) = 0

where the third step comes from f being even around π/2 and 2π-periodic, and

the fourth from f being odd.

Having gm(δ) = 0 is the key to prove the instability of every equilibria with

even m. It essentially states that the aggregate effect of one constellation Cl on

any oscillator j ∈ V (G)\Cl is zero when m is even, and therefore any perturba-

tion that maintains Cl has null effect on j. This is shown in the next proposition.

Theorem 2.2 (Instability for even m ). Given an equilibrium φ∗ with isotropy (Sk1 ×

Sk2 × · · · × SklB )m o Zm and f ∈ Fπ
2

even around π
2 . Then, if m is even, φ∗ is unstable.

Proof. We will show the instability of φ∗ by finding a cut of the network satis-

fying (2.12). Let V0 ⊂ V (G) be the set of nodes within one of the blocks of the
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Figure 2.8: Cut of Theorem 2.2, the red block represents one possible set
V0

constellation C0 and consider the partition induced by V0, i.e. P = (V0,V (G)\V0).

Due to the structure of φ∗, (2.12) becomes

∑
i j∈C(P)

f ′(φ∗j − φ
∗
i ) = −k1 f ′(0) +

lB∑
l=1

klg
′
m(δl ),

where g′m(δ) is the derivative of gm and δl is the phase shift between the C0 and

Cl . Finally, since by assumptions gm(δ) ≡ 0 ∀δ then it follows that g′m(δ) ≡ 0 and

∑
i j∈C(P)

f ′i j (φ
∗
j − φ

∗
i ) = −k1 f ′(0) < 0.

Therefore, by (2.12), φ∗ is unstable.

The natural question that arises is whether similar results can be obtained for

m odd. The main difficulty in this case is that gm(δ) = 0 does not hold since we

no longer evaluate f at points with phase difference equal to π such that they

cancel each other. Therefore, an extra monotonicity condition needs to be added

in order to partially answer this question. These conditions and their effects are

summarized in the following claims.

Lemma 2.3 (Monotonicity). Given f ∈ Fπ
2

:= F{b= π
2 }

, as in Definition 2.1, such that
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f is strictly concave for θ ∈ [0, π], then

f ′(θ) − f ′(θ − φ) < 0, 0 ≤ θ − φ < θ ≤ π (2.19)

f ′(θ) − f ′(θ + φ) < 0, −π ≤ θ < θ + φ ≤ 0 (2.20)

Proof. The proof is a direct consequence of the strict concavity of f . Since f (θ) is

strictly concave then basic convex analysis shows that f ′(θ) is strictly decreasing

within [0, π]. Therefore, the inequality (2.19) follows directly from the fact that

θ ∈ [0, π],θ − φ ∈ [0, π] and θ − φ < θ. To show (2.20) it is enough to notice that

since f is odd ( f ∈ Fπ
2
), f is strictly convex in [π,2π]. The rest of the proof is

analogous to (2.19).

Lemma 2.4 ( f ′ Concavity). Given f ∈ Fπ
2

such that f ′ is strictly concave for θ ∈

[− π2 ,
π
2 ]. Then for all m ≥ 4, f ′( πm ) ≥ 1

2 f ′(0).

Proof. Since f ′(θ) is concave for θ ∈ [−π,π] then it follows

f ′(
π

m
) = f ′(λm0 + (1 − λm)

π

2
) > λm f ′(0) + (1 − λm) f ′(

π

2
) > λm f ′(0)

where λm =
m−2

m . Thus, for m ≥ 4, λm ≥
1
2 and

f ′(
π

m
) >

1

2
f ′(0)

as desired.

Now we show the instability of any equilibria with isotropy (Sk1 × Sk2 × · · · ×

SklB )m o Zm for m odd and greater or equal to 7.

Theorem 2.3 (Instability for m ≥ 7 and odd). Suppose f ∈ Fπ
2

with f concave in

[0, π] and f ′ concave in [− π2 ,
π
2 ], then for all m = 2k + 1 with k ≥ 3 the equilibria φ∗s

with isotropy (Sk1 × Sk2 × · · · × SklB )m o Zm are unstable.
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Figure 2.9: Cut used in Theorem 2.3. The dots in red represent all the
oscillators of some maximal set S with d(φ∗,S) < 4π

m

2.3 Effect of Delay

Once delay is introduced to the system of coupled oscillators, the problem be-

comes fundamentally harder. For example, for pulse-coupled oscillators, the re-

ception of a pulse no longer gives accurate information about the relative phase

difference ∆φi j = φ j − φi between the two interacting oscillators. Before, at the

exact moment when i received a pulse from j, φ j was zero and the phase differ-

ence was estimated locally by i as ∆φi j = −φi. But now, when i receives the pulse,

the difference becomes ∆φi j = −φi − ψi j . Therefore, the delay propagation acts

as an error introduced to the phase difference measurement and unless some

information is known about this error, it is impossible to predict the behavior.

Moreover, as we will see later, slight changes in the distribution can produce

nonintuitive behaviors.

Even though it may not be satisfactory for some applications, many existing

works choose to ignore delay. (see for e.g., [24, 32, 40]). That is mainly for ana-

lytical tractability. On the other hand, when delay is included [118] the studies

concentrate on finding bounds on delay that maintain stability.

In this section, we study how delay can change the stability in a network of
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weakly coupled oscillators. A new framework to study these systems with de-

lay will be set up by constructing an equivalent non-delayed system that has

the same behavior as the original one in the continuum limit. We then use this

result to show that large heterogeneous delay can help reach synchronization,

which is a bit counterintuitive and significantly generalizes previous related

studies [25, 136, 137]. We will assume complete graph to simplify notation and

exposition although the results can be extended for a broader class of densely

connected networks.

The contribution of this section is two fold. Firstly, it improves the under-

standing of the effect of delays in networks of coupled oscillators. Secondly,

it opens new possibilities of using delay based mechanisms to increase the re-

gion of attraction of the in-phase equilibrium set. We shall build on existing

arguments such as mean field approximation [127] and Lyapunov stability the-

ory [32, 39] while looking at the problem from a different perspective.

2.3.1 Mean Field Approximation

Consider the case of homogeneous oscillators (Ωi = ω and ωi = 0) with all to all

identical coupling (Ni = N\{i}, ∀i ∈ N and fi j = f ∀i, j). Assume the phase lags

ψi j are randomly and independently chosen from the same distribution with

probability density g(ψ). By letting N → +∞ and ε → 0 while keeping εN =: ε̄

a constant, (2.3) becomes

v(φ, t) := ε̄

∫ π

−π

∫ +∞

0
f (σ − φ − ψ)g(ψ)ρ(σ, t)dψdσ, (2.21)

where ρ(φ, t) is a time-variant normalized phase distribution that keeps track

of the fraction of oscillators with phase φ at time t, and v(φ, t) is the velocity
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field that expresses the net force that the whole population applies to a given

oscillator with phase φ at time t.

Since the number of oscillators is preserved at any time, the evolution of

ρ(φ, t) is governed by the continuity equation

∂ρ

∂t
+

∂

∂φ
(ρv) = 0 (2.22)

with the boundary conditions ρ(0, t) ≡ ρ(2π, t). Equations (2.21)-(2.22) are not

analytically solvable in general. Here we propose a new perspective that is in-

spired by the following observation.

Consider the non-delayed system of the form

φ̇i = ε
∑
j∈Ni

H (φ j − φi), (2.23)

where

H (θ) = f ∗ g(θ) =
∫ +∞

0
f (θ − ψ)g(ψ)dψ (2.24)

is the convolution between f and g.

By the same reasoning of (2.21) it is easy to see that the limiting velocity field

of (2.23) is

vH (φ, t) = ε̄
∫ 2π

0
H (σ − φ)ρ(σ, t)dσ

= ε̄

∫ 2π

0

(∫ +∞

0
f ((σ − φ) − ψ)g(ψ)dψ

)
ρ(σ, t)dσ

= ε̄

∫ 2π

0

∫ +∞

0
f (σ − φ − ψ)g(ψ)ρ(σ, t)dψdσ

= v(φ, t)

where in the first and the third steps we used (2.24) and (2.21) respectively.

Therefore, (2.4) and (2.23) have the same continuum limit.
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Remark 2.4. Although (2.23) is quite different from (2.4), both systems behave exactly

the same way in the continuum limit. Therefore, as N grows, (2.23) approximates (2.4)

and can be therefore analyzed to understand the behavior of (2.4).
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Figure 2.10: Effect of delay in coupling shape

Figure 2.10 shows how the underlying delay (in this case the delay distri-

bution) determines the type of coupling (attractive or repulsive) that produces

synchronization. The original function f produces repulsive coupling, whereas

the corresponding H is attractive. In fact, as we will soon see, the distribution

of delay can not only affect the type of coupling qualitatively, but it can also

change the stability of certain phase-locked limit cycles.

We now study two examples to illustrate how this new approximation can

provide significant information about performance and stability of the original

system. We also provide numerical simulations to verify our predictions.

2.3.2 Kuramoto Oscillators

We start by studying an example in the literature [138] to demonstrate how we

can use the previous equivalent non-delayed formulation to provide a better un-

derstanding of systems of coupled oscillators with delay. When f (θ) = K sin(θ),
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H (θ) can be easily calculated:

H (θ) =
∫ +∞

0
K sin(θ − ψ)g(ψ)dψ

= K
∫ +∞

0
=[ei(θ−ψ)g(ψ)]dψ = K=[eiθ

∫ +∞

0
e−iψg(ψ)dψ]

= K=
[
eiθCe−iξ

]
= KC sin(θ − ξ)

where= is the imaginary part of a complex number, i.e. =[a+ib] = b. The values

of C > 0 and ξ are calculated using the identity

Ceiξ =

∫ +∞

0
eiψg(ψ)dψ.

This complex number, usually called “order parameter”, provides a measure of

how the phase-lags are distributed within the unit circle. It can also be inter-

preted as the center of mass of the lags ψi j ’s when they are thought of as points

(eiψi j ) within the unit circle S1. Thus, when C ≈ 1, the ψi j ’s are mostly concen-

trated around ξ. When C ≈ 0, the delay is distributed such that
∑

i j eiψi j ≈ 0.

In this example, (2.23) becomes

φ̇i = εKC
∑
j∈Ni

sin(φ j − φi − ξ). (2.25)

Here we see how the distribution of g(ψ) has a direct effect on the dynamics.

For example, when the delays are heterogeneous enough such that C ≈ 0, the

coupling term disappears and therefore makes synchronization impossible. A

complete study of the system under the context of superconducting Josephson

arrays was performed [138] for the complete graph topology. There the authors

characterized the condition for in-phase synchronization in terms of K and Ceiξ .

More precisely, when KCeiξ is on the right half of the plane (KC cos(ξ) > 0), the

system almost always synchronizes. However, when KCeiξ is on the left half of
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the plane (KC cos(ξ) < 0), the system moves towards an incoherent state where

all of the oscillators’ phases spread around the unit circle such that its order

parameter, i.e. 1
N

∑N
l=1 eiφl , becomes zero.

Figure 2.11: Delay distributions and their order parameter Ceiξ

Figure 2.12: Repulsive sine coupling with heterogeneous delays

We now provide simulation results to illustrate how (2.25) becomes a good

approximation of the original system when N is large enough. We simulate

the original repulsive (K < 0) sine-coupled system with heterogeneous delays

and its corresponding approximation (2.25). Two different delay distributions,

depicted in Figure 2.11, were selected such that their corresponding order pa-

rameters lie in different half-planes.
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The same simulation is repeated for N = 5,10,50. Figure 2.12 shows that

when N is small, the order parameter of the phases in the original system (in

red/blue) draws a trajectory that is completely different with respect to its ap-

proximation (in green). However, as N grows, in both cases the trajectories

become closer and closer. Since K < 0, the trajectory of the system with wider

distribution (C cos ξ < 0) drives the order parameter towards the boundary of

the circle, i.e., heterogeneous delay leads to homogeneous phase.

2.3.3 Effect of Heterogeneity

We now explain a more subtle effect that heterogeneity can produce. Consider

the system in (2.23) where H is odd and continuously differentiable. Then, from

section 2.2, all the oscillators eventually end up running at the same speed ω

with fixed phase difference such that the sum
∑

i∈Ni
H (φ j − φi) cancels ∀i. More-

over, we can apply (2.12) to assess the stability of these orbits. Therefore, if we

can find a cut C of the network such that
∑

i j∈C H′(φ∗j − φ
∗
i ) < 0, the phase-locked

solution will be unstable.

Although this condition is for non-delayed phase-coupled oscillators, the

result of this section allows us to translate it for systems with delay. Since H is

the convolution of the coupling function f and the delay distribution function

g, we can obtain H′(φ∗j − φ
∗
i ) < 0, even when f ′(φ∗j − φ

∗
i ) > 0. This usually occurs

when the convolution widens the region with a negative slope of H . See Figure

2.10 for an illustration of this phenomenon.

Figures 2.13 and 3.4 show two simulation setups of 45 oscillators pulse-

coupled all to all. The initial state is close to a phase locked configuration
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Figure 2.13: Pulse-coupled oscillators with delay: Stable equilibrium

Figure 2.14: Pulse-coupled oscillators with delay: Unstable equilibrium

45



formed by three equidistant clusters of 15 oscillators each. The shape of the

coupling function f and the phase lags distributions are shown in part a. We

used (2.5) to implement the corresponding pulse-coupled system (2.1). While

f is maintained unchanged between both simulations, the distribution g does

change. Thus, the corresponding H = f ∗ g changes as it can be seen in part

b; the blue, red, and green dots correspond to the speed change induced in an

oscillator within the blue cluster by oscillators of each cluster. Since all clusters

have the same number of oscillators, the net effect is zero. In part c the time

evolution of oscillators’ phases relative to the phase of a blue cluster oscillator

are shown. Although the initial conditions are exactly the same, the wider delay

distribution on Figure 3.4 produces a negative slope on the red and green points

of part b, which destabilizes the clusters and drives oscillators toward in-phase

synchrony.

Figure 2.15: Pulse-coupled oscillators with delay: Synchronization proba-
bility
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Finally, we simulate the same scenario as in Figures 2.13 and 3.4 but now

changing N and the standard deviation, i.e. the delay distribution width. Figure

2.15 shows the computation of the synchronization probability vs. standard

deviation. The dashed line denotes the minimum value that destabilizes the

equivalent system. As N grows, the distribution shape becomes closer to a step,

which is the expected shape in the limit. It is quite surprising that as soon as

the equilibrium is within the region of H with negative slope, the equilibrium

becomes unstable as the theory predicts.

2.4 Heterogeneous Frequencies

We now concentrate on studying the effect of heterogeneous frequencies. As

in the previous sections, we are interested in achieving phase consensus. To

simplify the analysis we will restrict our attention to continue phase coupled

oscillators evolving according to

φ̇i = Ωi +
∑
j∈Ni

fi j (φ j − φi). (2.26)

Unfortunately, as soon as the homogeneous frequency assumption is

dropped, the problem becomes considerably harder. The challenge is two fold.

Firstly, equation (2.4) no longer describes potential dynamics when Ωi , 0 and

in fact, to the best of our knowledge, there is not global convergence proof for a

system of a finite number of oscillators; the closest result is the work of Ott and

Antonsen [139,140] for a system of oscillators in the continuum limit. Secondly,

it is not even possible to achieve phase consensus without prior knowledge of
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Ωi. This is mainly due to the fact that in order for synchronization to occur

ω∗ = Ωi +
∑
j∈Ni

fi j (φ∗j − φ
∗
i ), (2.27)

must hold ∀i ∈ V and thus the system needs to compensate the frequency mis-

match by introducing a certain phase difference.

Fortunately, if we allow ourselves to modify the dynamics, we can overcome

these difficulties by combining ideas from coupled oscillators and linear con-

sensus. Instead of additively changing the frequency as in (2.26), we propose

controlling the oscillator speed using a multiplicative scalar γi, i.e.

φ̇i = Ωiγi, ∀i ∈ V. (2.28)

This way, only when γi = 1, the i the oscillator will run at its own natural fre-

quency.

The problem is now reduced to how to define a control law for γi. Since

our aim is to obtain consensus in both frequency, γiΩi, and phase, φi, then the

adaptation γ̇i should accept such desired solution.

For instance, an initial attempt to solve this problem might be to use

γ̇i =
∑
j∈Ni

fi j (φ j − φi), ∀i ∈ V,

which amounts to adding an integrator to the dynamics. Formally, we can ex-

press the dynamics in vector form as,

γ̇ = −BF (BTφ) and φ̇ = Ωγ, (2.29)

where Ω = diag[Ωi].

What is interesting of (2.29) is that even though the frequencies Ωi might

be different, the system still allows phase and frequency consensus. In fact, by
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setting γi =
ω∗

Ωi
, φ∗i = φ̄, and integrating (2.29) we obtain the consensus orbit

φ(t) = ω∗t1N + φ̄1N ,∀i ∈ V.

However, a more detailed study of (2.29) unveils an additional oscillatory

behavior that this system exhibits. To see this, consider the function W : TN ×

RN → R,

W (φ,γ) =
1

2
γT
Ωγ + V (BTφ), (2.30)

where V (y) =
∑

i j∈E

∫ yi j

0
fi j (s)ds.

The function W (φ,γ) can be interpreted as the energy function of (2.29). In

fact, it is easy to see that φ̇ = ∂W
∂γ and γ̇ = − ∂W

∂φ which means that the system (2.29)

is Hamiltonian and that the energy W (φ,γ) remains constant along trajectories,

i.e. Ẇ ≡ 0.

This suggests that one could find trajectories in which energy changes from

kinetic (1
2γ

TΩγ) to potential V (BTφ) and back again over time. In Figure 2.16(a)

we illustrate one of these trajectories. We simulate a fully connected network of

3 nodes withΩi = 1, ∀i ∈ V and with initial condition φ = (0, π2 ,−
π
2 )T , and γ = 1T

3 .

Therefore, although (2.29) allows for the type of solutions we are seeking,

the additional integration introduced does not guarantee its convergence. A

standard technique to overcome this oscillatory nonlinear behavior [141, 142]

is to introduce a damping term in (2.29) that dissipates energy. For instance,

consider

γ̇ = −BF (BTφ) − νΩγ and φ̇ = Ωγ, (2.31)

where ν is a positive scalar.
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(a) Nonlinear oscillations of (2.29): Phases plotted relative to φ1
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(b) Adding a positive damping

Figure 2.16: Oscillations and Damping

Figure 2.16(b) shows that the trajectories with the same initial conditions as

before now converge. Unfortunately, as Figure 2.16(b) suggests, (2.31) can only

admit limit cycles with ω∗ = 0 which is unsuitable for our application.

The problem is that the term −νΩγ in γ̇ is behaving similarly to the system

ẋi = −νxi which clearly has a unique equilibrium in xi = 0. However, if we

consider instead,

ẋi =
∑

i j

ai j (x j − xi),

it is well known from linear consensus literature that under mild conditions on

a = [ai j ]i j∈V ×V , the trajectories with given initial condition x0 always converge
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to xi (t) → 1
n
∑n

i=1 x0
i ∀i ∈ V . More precisely, this occurs whenever ai j ≥ 0 and the

induced graph Ga = (V,Ea), with Ea = {i j ∈ V × V |ai j > 0}, is connected.

Therefore, it seems promising to study

γ̇ = −BF (BTφ) − L(a)Ωγ and φ̇ = Ωγ, (2.32)

where L(a) = Badiag[ai j ]BT
a is the weighted Laplacian [132] of the possibly dif-

ferent graph Ga = (V,Ea) and Ba denotes the incidence matrix of Ga as defined

in (4.1.2).

In the Euclidean counterpart of this problem, it is possible to guarantee con-

vergence even when only two nodes share speed information [143]. In our case,

we need to assume that the undirected graph Ga is connected.

Remark 2.5. One interpretation of the two terms of γ̇ in (2.32) is the following. The

term −BF (BTφ) seeks phase consensus, although it cannot achieve it by itself. And

the term −L(a)Ωγ seeks frequency consensus and it can actually achieve it, but it fails

to guarantee phase consensus. Thus, the term −L(a) acts as a damping term for the

phase consensus algorithm, or equivalently −BF (BTφ) acts as a correction term of the

frequency consensus algorithm. However, there is no simple explanation a priori of why

the combination of the two terms can guarantee both frequency and phase consensus

simultaneously.

Remark 2.6. Another alternative to (2.32) is to consider instead

γ̇ = −BF (BTφ) and φ̇ = Ωγ − BF (BTφ). (2.33)

The main advantage of (2.33) is that it does not need to compute the frequency mismatch

which can be very challenging in practice. Studying the convergence properties of this

solution is subject of future research.
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2.4.1 Synchronization Frequency

In this section, we compute the value ω∗ achieved by (2.32). We start by provid-

ing a general characterization for ω∗.

Proposition 2.1. Given initial conditions (φ0, γ0). If the system (2.32) converges to

an orbit like (2.6), then the achieved frequency can be computed using

ω∗ =

∑N
i=1 γ

0
i∑N

i=1
1
Ωi

. (2.34)

Proof. A well-know property of B (or Ba) is that ker[BT ] = span[1N ] whenever

G (or Ga) is connected. Using this property, it is straightforward to show that

1T
N γ̇ ≡ 0. Then, given initial condition γ0 we have

N∑
i=1

γi (t) = 1T
Nγ(t) = 1T

N (γ0 +

∫ t

s=0
γ̇(s)ds)

= 1T
Nγ

0 + 0 = 1T
Nγ

0.

Thus, the quantity
∑N

i=1 γi (t) =
∑N

i=1 γ
0
i is an invariant of the system.

Suppose now that the system converges to a limit cycle, or equivalently that

γi (t) → ω∗

Ωi
. Then it follows

N∑
i=1

γ0
i =

N∑
i=1

γi (t) →
N∑

i=1

ω∗

Ωi
= ω∗

N∑
i=1

1

Ωi
.

Solving for ω∗ gives the desired result.

When every clock starts with an initial frequency equal to its own natural

frequency (γi = 1), ω∗ will be the harmonic mean, i.e.,

1

ω∗
=

1

N

N∑
i=1

1

Ωi
. (2.35)
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The reason why the system does not achieve the average of {Ωi} is that the

system is in fact averaging a different quantity. This can be seen by substitut-

ing Ωi with 2π
Ti

in (2.35) which gives, T∗ = 2π
ω∗ =

1
N

∑N
i=1

2π
Ωi
= 1

N
∑N

i=1 Ti . Thus,

the achievable frequency is such that the cycle duration T∗ is the average cycle

duration among all the oscillators when running with their natural frequencies

1
Ti

’s.

2.4.2 Global Synchronization

We now describe our theoretical convergence results. We will show that under

the conditions of Theorem 2.1 the system (2.32) converges to a constant speed

orbit with common phase values, i.e. phase and frequency consensus. Through-

out this section we will assume that (2.32) contains isolated orbits. This is needed

in order to guarantee that the system cannot converge to an attractor conformed

by a continuum of unstable orbits [144]. Although this property may seem quite

restrictive according to example 2.1 and section 2.2.3, if we allow different cou-

pling functions fi js among different oscillator pairs, the symmetries of the sys-

tem can be broken and such sets will vanish. Formalizing this idea is the subject

of current research.

Frequency Concensus

First, we focus on guaranteeing global convergence towards a constant common

frequency, i.e. frequency consensus.

Theorem 2.4 (Frequency Consensus). Consider the system (2.32) running over con-

nected graphs G and Ga, with fi j being symmetric, odd and continuously differentiable.
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Then, for every initial condition, the trajectories converge to a limit cycle as in (2.6) with

ω∗ as in (2.34).

Proof. Consider the Lyapunov candidate function W (φ,γ) as defined in (2.30).

Notice that the domain of W is composed of the cross product (×) of a compact

space TN and the unbounded space RN . Therefore, to apply the global version

of Lassale’s Invariance Principle, we only need W to be radially unbounded

with respect to γ, which is true since Ω is positive definite.

Thus, for any given initial condition (φ0, γ0) with W (φ0, γ0) = c we can

always find a scalar r > 0 such that for every γ not in a ball Br ⊂ RN

of radius r and center 0, W (φ,γ) > c for any φ ∈ TN . Therefore, the set

Ψc := {(φ,γ) : W (φ,γ) ≤ c} ⊂ TN × Br is compact.

We start by taking the derivative of W along the trajectories. This gives

Ẇ (φ,γ) = γT
Ωγ̇ +

〈
B∇V (BTφ), φ̇

〉
= γT
Ω[−BF (BTφ) − BBT

Ωγ] +
〈
B∇V (BTφ),Ωγ

〉
= −γT

ΩL(a)Ωγ − γT
ΩBF (BTφ) + γT

ΩBF (BTφ)

= −(Ωγ)T L(a)(Ωγ) ≤ 0

where in the first two steps we use the chain rule for gradients ∇(V ◦ BT )(φ) =

B∇V (BTφ) and (2.32), in the third step we use the identity ∇V (y) = F (y), and in

the final step we use the fact that L(a) is positive semidefinite, i.e. xT L(a)x ≥ 0

∀x.

Thus, we have shown that Ψc is a compact positively invariant set since

Ẇ (φ,γ) ≤ 0 ∀(φ,γ) ∈ Ψc. Lassale’s Invariance Principle then implies that the

system converges to the largest invariant M set inside {Ẇ ≡ 0} ∩ Ψc. Now, since
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Ga connected implies that 1N is the only eigenvector of L(a) with zero eigen-

value, then Ẇ ≡ 0 implies

Ωγ(t) ≡ ω(t)1N .

Differentiating both sides, we get Ωγ̇(t) ≡ ω̇(t)1N which is also restricted to

span[1N ]. However, we already know that γ̇(t) ∈ ker[1T
N ]. Then, since

Ω
−1span[1N ] ∩ ker[1T

N ] = {0},

we must have γ̇ ≡ 0, which implies γ(t) ≡ ω∗Ω−11N for some constant scalar ω∗.

Therefore, we must have M = MTN × {ω∗Ω−11N } and the system converges to

an orbit like (2.6). Proposition 2.1 shows that ω∗ is as in (2.34).

Remark 2.7. Theorem 2.4 guarantees that the system will synchronize to the harmonic

mean of the frequencies (provided γ0
i = 1) but it does not guarantee phase consensus.

In other words, Theorem 2.4 places us in the same scenario as remark 2.1. Therefore, it

seems reasonable to try to impose a similar condition in the coupling function as the one

used in Theorem 2.1.

Phase Consensus

In this section, we focus on studying the stability of the limit cycles. We know

from Theorem 2.4 that (2.32) converges for every initial condition to an orbit like

(2.6), where ω∗ is characterized by (2.34). Also, since γ(t) → γ∗ with γ∗i =
ω∗

Ωi
,

then from (2.32) we get

0 = −BF (BTφ∗) − L(a)Ωγ∗

= −BF (BTφ∗) − Badiag[ai j ]BT
aΩΩ

−1ω∗1N

= −BF (BTφ∗)
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where in the last step we used again ker[BT
a ] = span[1N ]. Thus, φ∗ must be a

solution to BF (BTφ∗) = 0.

These orbits are exactly the same that would be achieved by the system of

coupled oscillators (2.26) if Ωi = ω∗ and fi j is as in Theorem 2.4. In section

2.2.2, we showed that their stability when using (2.26) depends on the locations

of the eigenvalues of the Laplacian L(w(φ∗)) given in equation (2.13), which

is the negation of the Jacobian of (2.26). Thus, if there is at least one negative

eigenvalue of L(w(φ∗)), then the orbit defined by φ∗ is unstable.

Now using Theorem 2.1 we know that whenever fi j ∈ Fb and b ≤ π
N−1 every

non in-phase orbit will make L(w(φ∗)) have a negative eigenvalue. However,

the Jacobian of the new system (2.32) is now

Jφ∗ =


0 Ω

−L(w(φ∗)) −L(a)Ω


,

which now depends on other terms like L(a) and Ω. We will show, however,

that provided L(a) is positive definite and induces a connected graph Ga, and

Ωi > 0 ∀i ∈ V , the eigenvalues of L(w(φ∗)) still control the stability.

In order to see this property, consider small perturbation δφ, δγ around a

certain orbit (2.6) and the following change of variable

x = TTδφ, z = TT
Ωδγ

where T ∈ RN× (N−1) is the matrix whose columns {Tj } are orthonormal and span

ker[1T
N ]. Notice that by definition, TTT is the orthogonal projection onto ker[1T

N ]

and TTT = IN−1, the identity matrix of dimension N − 1.

The transformation T is clearly not invertible, but it is quite useful to keep

track of the disagreement of δφ and Ωδγ. This is because given x = TTv, x
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becomes zero only when v ∈ span[1N ]. .

In other words, the change of variable maps the reference orbit to the point

x = 0, z = 0, and the corresponding dynamics

ẋ = z and ż = TT
Ω[L(w(φ∗))T x + L(a)T z] (2.36a)

describes the evolution of δφ and Ωδγ projected onto the subspace ker[1T
N ]. We

now show the following theorem.

Theorem 2.5 (Orbits Instability). Given connected graphs G and Ga, positive definite

Ω and positive semidefinite L(a) with only one zero eigenvalue. Consider any orbit

described by ω∗ and φ∗ as in (2.6). Whenever L(w(φ∗)) has a negative eigenvalue, the

orbit is unstable and when L(w(φ∗)) is positive semidefinite with one zero eigenvalue,

the orbit is stable.

The proof of this theorem uses a semidefinite version of a Inertia theo-

rem [145, Cor. 2, Th. 5] which is presented here as Lemma 2.5

Lemma 2.5. Suppose J ∈ Cp×p has no eigenvalues on the imaginary axis, H ∈ Cp×p is

an invertible Hermitian matrix and JH + H J∗ ≥ 0, where J∗ is the conjugate transpose

of J. Then the number of eigenvalues of J having positive real part is equal to the

number of positive eigenvalues of H .

Proof. We prove this theorem by showing that if L(w(φ∗)) has a negative eigen-

value, the equilibrium (x∗, z∗) = (0,0) is unstable. Thus, since x and y are pro-

jected version of δφ and Ωδγ, this shows that in fact the orbit is unstable.

To use Lemma 2.5 we need to show that the Jacobian of (4.7) Ĵ doesn’t have
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any eigenvalue on the imaginary axis. Notice first that

Ĵ =


0 In

−Ω̂L̂1 −Ω̂L̂2


where Ω̂ = TTΩT , L̂1 = TT L(w(φ∗))T and L̂2 = TT L(a)T . Suppose Ĵ has an

imaginary eigenvalue jλ, i.e. Ĵv = jλv where v ∈ C2n and v = [vT
1 v

T
2 ]T with

v1,v2 ∈ C
n.

v2 = jλv1

−Ω̂L̂1v1 − Ω̂L̂2v2 = jλv2

If λ = 0, then v1 = v2 = 0n. Otherwise, we obtain

Ω̂
(
L̂1 + λ2

Ω̂
−1 + jλ L̂2

)
v1 = 0n (2.37)

Now setting v1 = x + jy and setting real and imaginary part of (2.37) to zero and

noticing that Ω̂ is invertible, we obtain

X x − λ L̂2y = 0 and X y + λ L̂2x = 0

with X = −L̂1 + λ2Ω̂−1. Therefore, since L̂2 is invertible we obtain x = 1
λ X L̂−1

2 y

and follows that
1

λ

(
λ2 L̂2 + X L̂−1

2 X
)
y = 0

which implies that y = 0n since the facts that X = XT and L2 is positive definite

make λ2 L̂2 + X L̂−1
2 X positive definite. It follows that x = v1 = v2 = 0n. Thus

whenever Ĵ has an imaginary eigenvalue, v = 02n which is a contradiction.

Finally, consider

H =


−L̂−1
1 0n×n

0n×n Ω̂


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Then it is easy to show that

JH + H JT =



0n×n 0n×n

0n×n 2Ω̂L̂2Ω̂


≥ 0

Result follows then by applying Lemma 2.5.

Theorem 2.5 provides the connection between our clock synchronization al-

gorithm and equal frequency coupled oscillators. It essentially shows that pro-

vided Ωi > 0 ∀i and L(a) is positive semidefinite with only one zero eigenvalue,

both systems contain the same instability condition. This allows us to prove the

main result of this section.

Theorem 2.6 (Phase Consensus). Consider the clock system (2.32) running over con-

nected undirected graphs G and Ga. Then, provided fi j ∈ Fb with b ∈ (0, π
N−1 ], for

almost every initial condition (φ0, γ0), (2.32) achieves phase and frequency consensus

with ω∗ as in (2.34).

Proof. Since G and Ga are connected and fi j by definition is symmetric, odd and

continuously differentiable, then by Theorem 2.4, (2.32) will always achieve fre-

quency consensus. As mentioned before, since there are many possible synchro-

nized orbits, this does not guarantee phase consensus.

However, since fi j ∈ Fb with b ∈ (0, π
N−1 ], Corollary 5 of [146] guarantees

that any other configuration φ∗ of (2.6) will produce a negative eigenvalue in

L(w(φ∗)). Therefore, by Theorem 2.5, every limit cycle of (2.32) besides the

phase consensus one is unstable.

So, unless the initial condition (φ,γ) belongs to the zero measure set that

converges to these unstable orbits, (2.32) will always converge to the orbit with
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phase and frequency consensus.

2.4.3 Simulations

We now present simulations to illustrate our results. In Figure 2.17 we simulate

a network of three oscillators running the coupled oscillator algorithm (2.26)

and the clock synchronization algorithm (2.32). Both graphs G and Ga are com-

plete and the initial condition is

φ0 = (0,
π

3
,
2π

3
)T and γ0 = (1,1,1)T ,

where γ0 is only used in (2.32). The frequency of each clock is (ω1,ω2,ω3) =

(1,2,3).

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

t

φ
i
−

φ
1

Phase Coupled Oscillators

 

 

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

t

φ
i
−

φ
1

Clock Sync Algorithm

 

 

1
2
3

1
2
3

(a) Phase: Couple Oscillators have to compensate the frequency mis-
match

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

t

φ̇
i

Phase Coupled Oscillators

 

 

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

t

φ̇
i

Clock Sync Algorithm

 

 

1
2
3
ω∗

1
2
3

(b) Frequency: Both systems achieve a common frequency

Figure 2.17: Different Frequency CO vs Clock Synchronization
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Figure 2.17(a) shows that while (2.32) can achieve phase consensus, (2.26)

cannot achieve it due to the frequency difference. Figure 2.17(b) shows that

both systems succeed in achieving frequency consensus. Since the initial γ0

sums to N = 3, then (2.32) will have a ω∗ as in (2.35), which in our case reduces

to ω∗ = 1.6364.

We now show why a condition of b ∈ (0, π
N−1 ] is needed in order to guarantee

phase consensus. We simulate (2.32) over a ring network of N = 6 nodes, set

Ωi = 1 ∀i ∈ V and initialize the state with values φ0 = [2πk
6 ]k∈{0,...,5} and γ0 = 16.
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(b) Stable Limit Cycle: b = π
6

Figure 2.18: De-stablizing orbits by shrinking b below π
N−1

Figure 2.18 shows two simulations of the same ring network with exactly the

same initial conditions. The only difference is the choice of fi j . Figure 2.18(a)

shows that when we use a b = π
2 > π

N−1 the system stays in the orbit defined by

the initial condition. However, once b = π
6 < π

N−1 , Figure 2.18(b), the orbit is no
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longer stable and the system converges to the phase and frequency consensus.
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CHAPTER 3

DISTRIBUTED NETWORK CLOCK SYNCHRONIZATION:

FUNDAMENTAL LIMITS AND PERFORMANCE OPTIMIZATION

A natural question that arises after developing mechanisms that achieve

phase consensus for arbitrary connected graphs as presented in section 2.4 of

chapter 2 is whether those results can be applied. Computer clock synchroniza-

tion seems at first sight an ideal candidate as the main objective in this problem

is to make every clock on the network run with the same speed (frequency con-

sensus) and at exactly the same time (phase consensus). However, as in any

technology development process, there is a gap between theory and practice.

Moreover, very often new challenges appear, while others get simplified.

As we will see in this chapter, the problem of synchronizing computer clocks

its not an exception. This chapter is organized as follows. In section 3.1 we pro-

vide some background on how clocks are implemented and corrected in com-

puters and how these systems relate with the models of chapter 2. Section 3.2

motivates and describes our algorithm together with an intuitive explanation of

why it works. In section 3.3, we analyze the algorithm and determine the set

of parameter values and connectivity patterns under which synchronization is

guaranteed. The effect of noisy measurement and wander is studied in section

3.4, together with an optimization procedure that finds the parameter values

that minimize its effect. Experimental results evaluating the performance of the

algorithm are presented in section 3.5.
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3.1 Computer Clocks and Synchronization

Most computer architectures keep track of time using a register that is periodi-

cally increased by either hardware or kernel’s interrupt service routines (ISRs).

On Linux platforms, there are usually several different clock devices that can be

selected as the clock source by changing the clocksource kernel parameter. One

particular counter that has been used recently by several clock synchronization

protocols [44,49] is the Time Stamp Counter (TSC), which counts the number of

CPU cycles since the last restart. The TSC is a 64-bit counter that has a nominal

increment period of δo. For example, in the IBM BladeCenter LS21 server, the

CPU has a nominal frequency f o = 2399.711MHz which makes δo = 0.416ns.

Whenever the counter ci (t) reaches a value of C it is reset back to zero. There-

fore, we can express ci (t) according to

ci (t) = b
t − to

i

δi
c mod C (3.1)

or using the radian units according to

φi (t) = 2π
ci (t)

C
= 2π

b
t−toi
δi
c

C
mod 2π (3.2)

where b·c is the floor operator, to
i is the time when the counter was started and

δi is the actual CPU cycle period at node i. Without loss of generality, we may

assume that all the servers start at the same time, i.e. to
i = to, but they may start

with different ci (to) values.

A common assumption is to approximate ci (t) (and therefore φi (t)) by a real

variable ci (t) = t−to
δi

mod C. This is, in fact, a reasonable approximation since

C = 264 − 1 � 1 and δo = 0.416ns� 1µs. Therefore, equations (3.1) and (3.2)
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become

ci (t) =
t − to

δi
mod C and φi (t) = Ωi (t − to) mod 2π

where the angular frequency Ωi =
2π
δiC

.

Using this counter, each server can compute its own estimate xi (t) of the

reference time t using

xi (t) = δoci (t) + xo
i = δ

o C
2π
φi (t) + xo

i (3.3)

where xo
i is the estimate of the time when the server was turned on (to).

A consequence of (3.3) is that xi (t) may be interpreted as a properly scaled

version of the counter phase φi (t). This could imply, in principle, that in the aim

of synchronizing several servers in a network the system may be attracted to a

phase-locked state of the form of Figure 2.18(a).

However, this is not a challenge in computer networks due to several rea-

sons. Firstly, even though the counter may reach a value of C, it is fairly easy

to modify the routine that handles xi (t) to identify the counter reset and com-

pensate accordingly by adding To = δoC to xi (t). Secondly, with C = 264 − 1 and

δo = 0.416ns the period of the counter To ≈ 243 years which makes it very un-

likely for the counter to reset. Therefore, in this scenario one can assume C to be

infinite and disregard any periodic behavior that ci (t) may incur and transform

(3.3) into

xi (t) = ri (t − to) + xo
i . (3.4)

where ri := δo

δi
represents the skew of the local clock with respect to its nominal

value; when ri > 1 (ri < 1) the clock is running with frequency higher (lower)

than f o = 1
δo .
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Equation (3.4) is significantly simpler than (3.3). In fact, equation (3.4) is

a linear function of the time. Unfortunately, the skew ri varies due to several

factors such as room temperature, mechanical vibrations and interference. This

is shown in Figure 3.1(a) where we plot the offset variations between the TSC

counters of serv0 and serv1 in our testbed (Figure 3.2, detailed specifics can be

found in section 3.5) over more than two days.
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Figure 3.1: Comparison between two TSC counters and execution of adj-
timex command

Therefore, in the same spirit of section 2.4 we will introduce a skew cor-

rection si in the computation of xi (t) to compensate the frequency skew. This is

equivalent to setting φ̇i = Ωisi as in (2.28) and results in the following expression

for xi (t),

xi (t) = risi (t − to) + xo
i . (3.5)

This map shows explicitly the two fundamental unknowns in a clock synchro-

nization problem (to and ri) and the two parameters that can be used to steer the

clock (si and xo
i ).

66



Figure 3.2: Testbed of IBM BladeCenter blade servers

3.1.1 Clock Discipline

To discipline xi (t) towards t, i.e. make xi (t) = t, one needs to estimate the offset

Dx
i (t) = t − xi (t) at time to and the relative frequency error f err

i =
1−ri

ri
. In fact,

if these values were available at the beginning (something that in practice is not

true), then one could just set s = 1 + f err and add an additional offset to (3.5) to

get

xi (t) = ri

(
1 +

1 − ri

ri

)
(t − to) + xo

i + Dx
i (to)

= 1(t − to) + xo
i + (to − xo

i ) = t.

Unfortunately, these values are generally unknown and variable. Thus,

f err
i (t) and Dx

i (t) need to be repeatedly estimated while the server is running,

which introduces several constraints on how the clock can be disciplined as it

may affect the execution of time sensitive applications.

To understand the differences between current protocols and relate them to

the models of section 2.4, we first rewrite the evolution of xi (t) based only on
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the time instants tk in which the clock corrections are performed. This marks

a clear difference with respect to chapter 2 where the adaptations were done

in continuous time. Furthermore, we allow the skew correction si to vary over

time, i.e. si (tk ), and write xi (tk+1) as a function of xi (tk ). Thus, we obtain

xi (tk+1) = xi (tk ) + τkrsi (tk ) + ux
i (tk ) (3.6)

si (tk+1) = si (tk ) + us
i (tk ) (3.7)

where τk = tk+1 − tk is the time elapsed between adaptations; also known as poll

interval [41]. The values ux
i (tk ) and ux

i (tk ) represent two different types of correc-

tion that a given protocol chooses to do at time tk and are usually implemented

within the interval (tk , tk+1). ux
i (tk ) is usually referred to as offset correction and

us
i (tk ) as skew correction.

These corrections can be done in Linux OS using the adjtimex() interface. The

commands

adjtimex -s offset and adjtimex -f freq,

where offset is in nanoseconds (ns) and freq= 65536 equals 1ppm (parts per mil-

lion), are equivalent to setting

ux (tk ) = offset × 1e−9s and us (tk ) = 1 +
freq

65536
× 1e−6.

Figure 3.1(b) shows the execution of two offset corrections of +20µs and -20µs,

and one frequency correction of approx 0.3ppm. We used offset= ±20000 and

freq= 20000.

Some protocols prefer instead to maintain their own virtual version of xi (t)

as for example IBM CCT [49] and RADclock [44]. This gives more control on

how the corrections are implemented since it does not depend on kernel’s rou-

tines.
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Figure 3.3: Variations of NTP time using TSC as reference

We now proceed to summarize the different types of adaptations imple-

mented by current protocols. The main differences between them are whether

they use offset corrections, skew corrections, or both, and whether they update

using offset values Dx
i (tk ) = tk − x(tk ), frequency errors f err

i (tk ) = 1−ri si (tk )
ri

, or

both.

Offset corrections

This correction consists in using us
i (tk ) = 0 and either

ux
i (tk ) = κ1Dx

i (tk ), or (3.8)

ux
i (tk ) = κ1Dx

i (tk ) + κ2 f err
i (tk ), (3.9)

where κ1, κ2 > 0. These adaptations are used by NTPv3 [147] and NTPv4 [41]

respectively under ordinary conditions.

The protocols that use (3.8) or (3.9) generally have a slow initialization

period, as shown in Figure 3.3(a). This is because the algorithm must first

obtain a very accurate estimate of the initial frequency error f err
i (to) and set

si (to) = 1 + f err
i (to). Furthermore, these updates usually generate non-smooth

time evolutions as in Figure 3.3(b) and should be done carefully since they might
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introduce backward jumps (xi (tk+1) < xi (tk )), which can be problematic for

some applications.

Skew corrections

Another alternative that avoids using steep changes in time was proposed in

[49]. This alternative does not introduce any offset correction, i.e. ux
i (tk ) = 0,

and updates the skew si (tk ) using

us
i (tk ) = κ1Dx

i (tk ) + κ2 f err
i (tk ). (3.10)

In [148] it was shown for a slightly modified version of (3.10) (used r f err (tk )

instead of f err (tk )) that under certain conditions in the parameter values, the al-

gorithm achieves synchronization for very diverse network architectures. Fur-

thermore, equation (3.10) amounts to a discrete time and linear version of (2.32)

where we used phase and frequency differences to update si.

The main difficulty in using (3.10) is that the estimation of f err (tk ) is nontriv-

ial as it is constantly changing with subsequent updates of s(tk ) and it usually

involves sophisticated computations [50, 51].

Skew and offset corrections

This type of correction allows dependence on only offset information Dx (tk ) as

input to ux (tk ) and us (tk ). For instance, in [45] the update

ux
i (tk ) = κ1Dx

i (tk ) and us
i (tk ) = κ2Dx

i (tk ) (3.11)

was proposed.
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This option allows the system to achieve synchronization without any skew

estimation. But the cost of achieving it is introducing offset corrections in x(t),

incurring in the same disadvantages discussed in 3.1.1

3.2 Skewless Network Synchronization

We now present an algorithm that overcomes the limitations of the solutions

described in Section 3.1. In other words, our solution has the following two

properties:

1. Smoothness: The protocol does not introduce steep changes on the time

value, i.e. ux (tk ) ≡ 0.

2. Skew independence: The protocol does not use skew information f erras

input.

After describing and motivating our algorithm, we show how the updating rule

can be implemented in the context of a network environment.

The motivation behind the proposed solution comes from trying to compen-

sate the problem that arises when one tries to naively impose properties 1) and

2), i.e. using

ux (tk ) = 0 and us (tk ) = κDx (tk ). (3.12)

Figure 3.4 shows that this type of clock corrections are unstable; the offset Dx (tk )

of the slave clock oscillates with an exponentially increasing amplitude.

The oscillations in Figure 3.4 arise due to the fundamental limitations of us-

ing offset to update frequency. On the other hand, the exponential increase
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appears since at time tk+1 the update is based on the offset at time tk . Right

before updating for the (k + 1)st time (at t−k+1), the actual value of the offset has

a correction

Dx
i (t−k+1) = Dx

i (tk ) + τkri f err
i (tk )

which after noticing that f err
i (tk ) = f err

i (t−k+1) amounts to an effective correction

given by

us
i (tk ) = κDx

i (tk ) = κDx
i (t−k+1) − κτkri f err

i (t−k+1).

Thus, at the moment of the correction, the offset used implicitly includes a neg-

ative term in the frequency error that hurts synchronization. This is clearly seen

in the case of a slower slave clock f err
i (t−k+1) =

1−ri si (t−k+1)
ri

> 0 with a positive

offset Dx
i (t−k+1) = t−k+1 − xi (t−k+1) > 0. While the first term of the correction tends

to speed up the clock (a desirable effect in this case), the second term tends to

slow it down.

One way to try to damp these unstable oscillations is to add a term that

opposes the frequency error term. This is done in (3.10) by making κ2 > κ1τkr .

However, there are other ways to generate such a term without needing f err (tk ).
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For instance, consider the exponentially weighted moving average of the offset

y(tk+1) = pDx (tk ) + (1 − p)y(tk ). (3.13)

and update s(tk ) using us (tk ) = (κ + γ)Dx (tk ) − γy(tk ).

If we again reference these values at the moment right before the correction

(t−k+1) we have

us (tk ) = κDx (t−k+1) − (κ + γ)τkr f err (t−k+1) (3.14)

+ γ(Dx (t−k+1) − y(t−k+1)).

So now, in the same situation as before ( f err (t−k+1) > 0 and Dx (t−k+1) > 0), we

have a new term γ(Dx (t−k+1) − y(t−k+1)). This will generally be positive since

the offset tends to further increase when the slave clock is slower and thus

Dx (t−k+1) − y(t−k+1) > 0.

Motivated by this discussion, we propose the following updating strategy:

ux (tk ) = 0 and us (tk ) = κ1Dx (tk ) − κ2y(tk ) (3.15)

where κ1 = κ + γ, κ2 = γ and (3.13). Figure 3.4 shows how the proposed strat-

egy can compensate the oscillations without the need to estimate the value of

f err (tk ). The stability of the algorithm will depend on how κ1, κ2 and p are

chosen. A detailed specification of these values is given in Section 3.3.2.

Finally, since we are interested in studying the effect of timing loops, we

move away from the client-server configuration implicitly assumed in Sec-

tion 3.1 and allow mutual or cyclic interactions among nodes. Each node i

has its own clock with skew ri and maintains its own values of xi (tk ), si (tk )

and yi (tk ). The interactions between different nodes are described by a graph
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G(V,E), where V represents the set of nodes (i ∈ V ) and E the set of di-

rected edges i j; i j ∈ E means node i can measure its offset with respect to j,

Dx
i j (tk ) = x j (tk ) − xi (tk ).

Within this context, a natural extension of (3.15) is to substitute Dx (tk ) with

the weighted average of i’s neighbors offsets. Thus, we propose

si (tk+1) =si (tk ) + κ1

∑
j∈Ni

αi j Dx
i j (tk ) − κ2yi (tk ) (3.16a)

yi (tk+1) =p
∑
j∈Ni

αi j Dx
i j (tk ) + (1 − p)yi (tk ) (3.16b)

where Ni represents the set of neighbors of i and αi j , 0 iff j ∈ Ni.

Under this framework, many servers can affect the final frequency of the

system. In general, when the system synchronizes globally, we have

xi (tk ) = r∗(tk − t0) + x∗ i ∈ V. (3.17)

r∗ and x∗ are possibly different from their ideal values 1 and t0. Their final values

depend on the initial condition of all different clocks as well as the topology,

which we assume to be a connected graph in this chapter.

3.3 Convergence Analysis

In this section, we analyze the asymptotic behavior of system (3.16) and provide

a necessary and sufficient condition on the parameter values that guarantee its

convergence to (3.17). The techniques used are drawn from the control litera-

ture, e.g. [45] and [148], yet its application in our case is nontrivial.

Notation 1. We use 0m×n (1m×n) to denote the matrices of all zeros (ones) within

Rm×n and 0n (1n) to denote the column vectors of appropriate dimensions. In ∈ R
n×n
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represents the identity matrix. Given a matrix A ∈ Rn×n with Jordan normal form

A = PJP−1, let nA ≤ n denote the total number of Jordan blocks Jl with l ∈ I(A) :=

{1, ...,nA}. We use µl (A), l ∈ {1, . . . ,n} or just µ(A) to denote the eigenvalues of A,

and order them decreasingly |µ1(A) | ≥ · · · ≥ |µn(A) |. Finally, AT is the transpose of

A, Ai j is the element of the ith row and jth column of A, ai is the ith element of the

column vector a (i.e. a = [ai]
T ) and a[i1,i2] is the column sub-vector of elements ais with

i1 ≤ i ≤ i2.

It is more convenient for the analysis to use a vector form representation of

(3.16) given by

zk+1 = Ak zk (3.18)

where zk := [x(tk )T s(tk )T y(tk )T ]T and

Ak :=



In τk R 0

−κ1L In −κ2In

p(−L) 0n×n (1 − p)In



,

R is the diagonal matrix with elements ri and L is the Laplacian matrix associ-

ated with G(V,E),

Lii = αii :=
∑
j∈Ni

αi j and Li j =


−αi j if i j ∈ E,

0 otherwise.

The convergence analysis of this section is done in two stages. First, we

provide necessary and sufficient conditions for synchronization in terms of the

eigenvalues of Ak (Section 3.3.1) and then use Hermite-Biehler Theorem [149] to

relate these eigenvalues with the parameter values that can be directly used in

practice (Section 3.3.2). All proof details are included in the Appendix for the

interested reader.
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3.3.1 Asymptotic Behavior

We start by studying the asymptotic behavior of (3.18). That is, we are interested

in finding under what conditions the series of xi (tk ) converge to (3.17).

We will assume without loss of generality that τk = τ ∀k (Ak = A) to simplify

presentation. The proofs presented here can be readily extended for the time

varying τk . Thus, we will drop the k index of Ak from here on.

Consider the Jordan normal form [150] of A

A = PJP−1 := [ζ1 ... ζ3n] J [η1 ... η3n]T (3.19)

where J = blockdiag(Jl )l∈I(A), ζi and ηi are the right and left generalized eigen-

vectors of A such that

ζT
i η j =


1 if j = i,

0 otherwise.

The crux of the analysis comes from understanding the relationship between

the multiplicity of the eigenvalue µ(A) = 1 and the eigenvalue µ(L) = 0, and

their corresponding eigenvectors.

Lemma 3.1 (Eigenvalues of A and Multiplicity of µ(A) = 1). A has an eigenvalue

µ(A) = 1 with multiplicity 2 if and only if the graph G(V,E) is connected, κ1 , κ2 and

p > 0.

Furthermore, µ(A) are the roots of

gl (λ) := (λ − 1)2(λ − 1 + p) + [(λ − 1)κ1 + κ2 − κ1]νl (3.20)

where νl = µl (τLR) and satisfies

νn = 0 < |νl | for l ∈ {1, . . . ,n − 1}. (3.21)
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Lemma 3.2 (Jordan Chains of µ(A) = 1 and µ(A) = 1 − p). Under the conditions of

Lemma 3.1 the right and left Jordan chains, (ζ1, ζ2) and (η2, η1) respectively, associated

with µ(A) = 1 and the eigenvectors ζ3 and η3 associated with µ(A) = 1 − p are given

by

[ζ1 ζ2 ζ3] =



1n 1n −
τκ2
p2 1n

0n
(R−11n )

τ
κ2
p R−11n

0n 0n R−11n



and (3.22)

[η1 η2 η3] = γ



R−1ξ 0n 0n

−τξ ξ 0n

τκ2( 1
p + 1

p2 )ξ − κ2p ξ ξ



(3.23)

where ξ is the unique left eigenvector of µ(L) = 0 and γ is the ξi-weighted harmonic

mean of ri, i.e. 1
γ = 1T

n R−1ξ =
∑n

i=1
ξi
ri
.

The proof of Lemmas 3.1 and 3.2 can be found in the Appendices A.2 and

A.3. We now proceed to state our main convergence result. The proof is rele-

gated to Appendix A.4.

Theorem 3.1 (Convergence). The algorithm (3.18) achieves synchronization for any

initial conditions if and only if the graph G(V,E) is connected, κ1 , κ2, p > 0 and

|µl (A) | < 1 whenever µl (A) , 1. Moreover, whenever the system synchronizes, we

have

x∗ = γ
n∑

i=1

ξi

(
1

ri
xi (t0) + τ

κ2

p2
yi (t0)

)
, and (3.24a)

r∗ = γ
n∑

i=1

ξi (si (t0) −
κ2

p
yi (t0)). (3.24b)

Theorem 3.1 provides an analytical tool to understand the influence of the

different nodes of the graph in the final offset x∗ and frequency r∗. For example,
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suppose that we know that node 1 has perfect knowledge of its own frequency

(r1) and the UTC time at t = t0 (x1(t0) = t0), i.e. node 1has perfect knowledge of

the UTC time. Then, if we configure the network such that node 1 is the unique

leader as the top node in Figures 3.5a and 3.5c, it is easy to show that ξ1 = 1 and

ξi = 0 ∀i , 1. Using now (3.24a)-(3.24b) and definition of γ we can see that γ = r1

and

x∗ = x1(t0) + r1τ
κ2

p2
y1(t0) and r∗ = r1s1(t0) −

r1κ2

p
y1(t0).

However, since node 1 knows r1 and t0, it can choose x1(t0) = t0, s1(t0) = 1
r1

and y1(t0) = 0. Thus, we obtain x∗ = t0 and r∗ = 1 which implies by (3.17) that

every node in the network will end up with xi (t) = t. In other words, Theorem

3.1 allows us to understand how the information propagates and how we can

guarantee that every server will converge to the desired time.

3.3.2 Necessary and sufficient conditions for synchronization

We now provide necessary and sufficient conditions in terms of explicit parame-

ter values (κ1, κ2 ,τ and p) for Theorem 3.1 to hold. We will restrict our attention

to graphs that have Laplacian matrices with real eigenvalues. This includes for

example trees (Figure 3.5a), symmetric graphs with αi j = α ji (Figure 3.5b) and

symmetric graphs with a leader (Figure 3.5c).

The proof consists in studying the Schur stability of gl (λ) and it has several

steps. We first perform a change of variable that maps the unit circle onto the left

half-plane. This transforms the problem of studying the Schur stability into a

Hurwitz stability problem which is solved using the Hermite-Biehler Theorem.

Theorem 3.2 (Hurwitz Stability (Hermite-Beihler)). Given the polynomial P(s) =
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(a)	
   (b)	
   (c)	
  

Figure 3.5: Graphs with real eigenvalue Laplacians

ansn + ... + a0, let Pr (ω) and Pi (ω) be the real and imaginary part of P( jω), i.e.

P( jω) = Pr (ω) + jPi (ω). Then P(s) is a Hurwitz polynomial if and only if

1. anan−1 > 0

2. The zeros of Pr (ω) and Pi (ω) are all simple and real and interlace as ω runs from

−∞ to +∞.

Proof. See [149].

We now determine the proper parameter values that guarantee synchroniza-

tion.

Theorem 3.3 (Parameter Values for Synchronization). Given a connected graph

G(V,E) such that the corresponding Laplacian matrix L has real eigenvalues. The algo-

rithm (3.18) achieves synchronization if and only if

(i) |1 − p| < 1 or equivalently 2 > p > 0

(ii) 2κ1
3p > κ1 − κ2 > 0

(iii) τ <
p(κ2−p(κ1−κ2))

µmax(κ1−p(κ1−κ2))2
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where µmax is the largest eigenvalue of LR.

Even though µmax depends on ri which is in generally unknown, it is easy to

show that µl (LR) ≤ r̂maxµl (L) where r̂max is an upper bound of the maximum

rate deviation ri. Furthermore, using Greshgorin’s circle theorem, it is easy to

show that µmax(L) ≤ 2αmax := 2 maxi αii. Therefore, if we set

τ <
p(κ2 − δκp)

2αmaxr̂max(κ1 − δκp)2
(3.25)

convergence is guaranteed for every graph with real eigenvalues.

3.4 Performance Analysis and Optimization

We now focus on studying the performance of our algorithm in the presence

of noise. We will consider two possible sources of noise corresponding to mea-

surement errors, due to network congestion, and frequency drifts (wander) due

to temperature variations, vibrations and interference.

Since our algorithm does not perform skew estimation, the network errors

only affect the offset measurements Dx
i j (tk ) in (3.16). We use gwi jwi j (tk ) to denote

the error incurred in estimating the offset between nodes i and j at time tk .

This can be produced, for instance, by a congested connection between the two

different nodes. We assume that wi j (tk ) has stationary mean E
[
wi j (tk )

]
= w̄i j

∀tk and unit variance E[(wi j (tk ) − w̄i j )2] = 1 and use gwi j to weight the different

connections.

On the other hand, we model the wander using a time varying rate ri (tk ) :=

ri + ∆ri (tk ) where the drift from the mean ∆ri (tk ) evolves according to the auto
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regressive process

∆ri (tk+1) = qi∆ri (tk ) + gd
i di (tk ) (3.26)

where qi is the autoregression coefficient (0 < qi < 1) and di (tk ) is a random

variable with zero mean E[di (tk )] = 0 and unit variance E[di (tk )2] = 1. Similar

models of wander have been used for instance in [51] where di (tk ) ∼ N (0,1).

Remark 3.1. Equation (3.26) makes the evolution of xi (tk ) in (3.18) nonlinear as now

xi (tk+1) = xi (tk )+τri (tk )si (tk ). This is overcome by the fact that ∆ri (tk ) and ∆si (tk ) :=

si (tk ) − s∗i are of the order of a few parts per millions and therefore ri (tk+1)si (tk+1) is

approximated by

ri (tk+1)si (tk+1) − ris∗i ≈ ∆ri (tk+1)s∗i + ri∆si (tk+1)

= s∗i (qi∆ri (tk )) + ri (∆si (tk ) + us
i (tk ) + βig

d
i di (tk )) (3.27)

where βi =
s∗i
ri
≈ 1. Equation (3.27) also shows that we can equivalently assume that

di (tk ) is a noise source that affects si (tk+1) instead of ri (tk+1).

This motivates the study of the stochastic process

zk+1 = Azk + Bek (3.28a)

vk+1 = Czk (3.28b)

where ek = [wT
k dT

k ]T , B = [Bw Bd] with

Bw =



0n×m

−κ1B−Gdiag[αi jg
w
i j ]

−pB−Gdiag[αi jg
w
i j ]



, Bd =



0n×n

diag[βig
d
i ]

0n×n



,

B−G = min{BG,0n×m} and BG being the incidence matrix of G(V,E) 1 and wk =

[wi j (tk )]T . The matrix C maps the system state zk to the performance metric vk

and will be specified in Section 3.4.
1Notice that using this definition L = B−

Gdiag[αi j ]BT
G
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In the remainder of this section, we first study the effect of biased network

noise (w̄i j , 0) in the asymptotic frequency of the system and time offsets. In

particular, we show that for arbitrarily distributed noise with stationary mean,

the system’s frequency tends to constantly drift unless there is a well defined

leader in the topology. We then proceed to study how the parameters and net-

work topology affect system performance, which is represented by the output

signal vk of the stochastic process.

We will assume that the input is white noise, i.e. E[ek eT
l ] = Im+nδ(l − k),2

and focus on reducing the output power | |vk | |
2
2 = limN→+∞

1
N

∑N−1
k=0 vT

k vk . This is

known in the control theory community asH2 optimal control.

3.4.1 Frequency Drift and Time Offset

We now concentrate on studying the evolution of the first moment of the

stochastic process (3.28). That is, we want to understand how z̄k = E[zk ]

evolves as k → +∞. To simplify the analysis, consider the change of variable

ẑ = P−1 z̄ = [η1 ... η3n]T z̄ where P is defined as in (3.19). This change of vari-

able further simplifies the dynamics of (3.28) giving

ẑk+1 = J ẑk + P−1Bww̄. (3.29)

Notice that we assume d̄ = 0n and thus the term Bd d̄ is omitted from (3.29).

While it is difficult to provide a physical interpretation of most of the vari-

ables of the vector ẑ, it is possible to relate certain groups of states to differ-

ent roles within the system. Consider the following partition of the state space

2δ(k) = 1 if k = 0 and 0 o.w.
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ẑ = [( ẑ[1,3])T |( ẑ[4,3n])T ]T . By definition of ẑ and (A.6) we have

ẑ[1,3]
k+1 = Ĵ1 ẑ[1,3]

k + [η1 η2 η3]T Bww̄ (3.30)

ẑ[4,3n]
k+1 = Ĵ2 ẑ[4,3n]

k + [η4 . . . η3n]T Bww̄ (3.31)

where

Ĵ1 =



1 1 0

0 1 0

0 0 1 − p



and ρ( Ĵ2) < 1.

The function ρ(A) is the spectral radius of A or equivalently the largest absolute

value of its eigenvalues.

The following lemma is crucial in understanding the role of the different

states of ẑ. Let

δ x̄k := x(tk ) − 1n

(
ẑ1(tk ) + ẑ2(tk ) −

τκ2

p2
ẑ3(tk )

)
(3.32)

δ s̄k := s(tk ) − R−11n

(
1

τ
ẑ2(tk ) +

κ2

p
ẑ3(tk )

)
(3.33)

δ ȳk := y(tk ) − R−11ẑ3(tk ). (3.34)

Lemma 3.3 (Mean Convergence). Under the conditions of Theorem 3.1 the system

(3.28) converges in mean towards

δ x̄k → δ x̄∗, δ s̄k → δ s̄∗ and δ ȳk → δ ȳ∗ (3.35)

with

δ z̄∗ =
[
δ x̄∗T δ s̄∗T δ ȳ∗T

]T
= [ζ4 ... ζ3n] ẑ[4,3n]∗ (3.36)

and

ẑ[4,3n]∗ = (I − Ĵ2)−1 [η4 . . . η3n]T Bww̄. (3.37)
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Proof. Since Ĵ2 has ρ( Ĵ2) < 1 then z[4,3n](tk ) converges for every initial condition

to a unique value which is the fix point of (3.31) given by ẑ[4,3n]∗(3.37) or in terms

of the original system variables by δ z̄∗ (3.36).

Now by definition of ẑ,

z̄k = Pẑk =

3∑
l=1

ζl ẑl (tk ) + [ζ4 ... ζ3n] ẑ[4,3n]
k

Then, since ẑ[4,3n]
k → ẑ[4,3n]∗

k we have

z̄k −

3∑
l=1

ζl ẑl (tk ) → [ζ4 ... ζ3n] ẑ[4,3n]∗ = δ z̄∗. (3.38)

Thus, by Lemma 3.2 we obtain



x̄k − δ x̄∗

s̄k − δ s̄∗

ȳk − δ ȳ
∗



−



1n( ẑ1(tk ) + ẑ2(tk ) − τκ2
p2 ẑ3(tk ))

R−11n
(

1
τ ẑ2(tk ) + κ2

p ẑ3(tk )
)

R−11n ẑ3(tk )



→ 03n

which is equivalent to (3.35).

Lemma 3.3 shows that while ẑ[1,3] has an homogeneous and (possibly) non-

constant effect on every node, ẑ[4,3n] in the limit introduces a fixed offset. In

particular, when w̄ = 0 (e.g. zero mean noise) δ z̄∗ = 0, ẑ2(tk ) = ( ẑ2)0,

ẑ1(tk ) = ( ẑ1)0 + k ( ẑ2)0 and ẑ3(tk ) → 0 achieving time consensus as in Theorem

3.1.

The next two theorems summarize the main results of this section.

Theorem 3.4 (Frequency Drift). In the presence of noise and under the condition of

Theorem 3.1 the system synchronizes in mean with constant frequency if and only if
n∑

i=1

ξi

∑
j∈Ni

αi jg
w
i j w̄i j = 0. (3.39)

Moreover, when this happens the mean frequency r∗ is given by (3.24b).
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Proof. By Lemma 3.3 we know that s̄i (tk ) asymptotically approaches δ s̄∗i +

1
τri

ẑ2(tk )+ κ2
pri

ẑ3(tk ) ∀i. Therefore, s̄i (tk ) becomes constant if and only if 1
τri

ẑ2(tk )+

κ2
p ẑ3(tk ) does.

Now from (3.30) it follows that

ẑ2(tk+1) = ẑ2(tk ) + ηT
2 Bww̄

= ẑ2(tk ) − τγ(κ1 − κ2)ξT B−Gdiag[αi jg
w
i j ]w̄

ẑ3(tk+1) = (1 − p) ẑ3(tk ) + ηT
3 Bww̄

= (1 − p) ẑ3(tk ) − pξT B−Gdiag[αi jg
w
i j ]w̄.

Thus, z3(tk ) → −ξT B−Gdiag[αi jg
w
i j ]w̄ and

ẑ2(tk ) = ẑ2(0) + tkγ(κ2 − κ1)ξT B−Gdiag[αi jg
w
i j ]w̄

which is constant if and only if (κ2 − κ1)ξT B−Gdiag[αi jg
w
i j ]w̄ = 0. But since, by

Theorem 3.1, κ1 > κ2 then we must have

0 = −ξT B−Gdiag[αi jg
w
i j ]w̄ =

n∑
i=1

ξi

∑
j∈Ni

αi jg
w
i j w̄i j .

Notice that (3.39) implies that ẑ[1,3]
k behaves identically to the noiseless ver-

sion

It is important to highlight the relationship between (3.39) and the topology

of G. In particular, it is possible to differentiate two different scenarios in which

(3.39) can be satisfied.

1. G has a unique leader (say i = 1): In this case we have N1 = ∅, i.e. α1 j = 0

∀ j, ξ1 = 1 and ξ j = 0 ∀ j , 1. That is −ξT B−Gdiag[αi jg
w
i j ]w̄ = ξ10 = 0
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2. G does not have a well defined root: Thus, there are at least two nodes

with ξi , 0 and w̄ is such that ξT B−Gdiag[αi jg
w
i j ]w̄ = 0.

Thus, while condition 1) can be satisfied by a proper configuration of the net-

work, condition 2) is only satisfied by a set of values of w̄ with zero measure.

Therefore, in practice the only possible way to avoid frequency drift is by using

a graph G with a well defined leader.

Corollary 3.1 (Frequency Robustness). In the presence of measurements noise, the

mean frequency ri s̄i (tk ) converges to a fixed value (3.24b) with probability one (in the

set of possible w̄) if and only if G has a well defined leader.

Furthermore, while at first sight it seems difficult to evaluate δ z̄∗ using (3.37),

the following Theorem provides us with a physical interpretation.

Theorem 3.5 (Time Offsets). Under the conditions of Theorem 3.1 and (3.39), δ z̄∗ in

(3.36) becomes

δ z̄∗ =



−N1L†B−Gdiag[αi j ]w̄

0n

0n


where L† is the pseudo inverse of L and N1 = (In − γ1ξ

T R−1).

Proof. By Lemma 3.2 and definition of ẑ we can compute

δ x̄k = x(tk ) − 1n

(
ẑ1(tk ) + ẑ2(tk ) −

τκ2

p2
ẑ3(tk )

)
= x(tk )

−γ1n

(
ξT R−1x(tk ) − τξT s(tk ) + τκ2

(
1

p
+

1

p2

)
ξT y(tk )

)
−γ1n

(
τξT s(tk ) −

τκ2

p
ξT y(tk )

)
+ γ1n

τκ2

p2
ξT y(tk )

= x(tk ) − γ1nξ
T R−1x(tk ) = N1x(tk ).
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Similarly, we have δ s̄k = N2s(tk ) and δ ȳk = N2y(tk ) where N2 = (In − γR−11ξT ).

Moreover, since N1R = RN2, N1L = LN2 = L and N2B−Gdiag[αi jg
w
i j ]w̄ =

B−Gdiag[αi jg
w
i j ]w̄ (by (3.39)) we have

δ x̄k+1 = δ x̄k + τRδ s̄k (3.40a)

δ s̄k+1 = −κ1Lδ x̄k + δ s̄k − κ2δ ȳk − κ1B−Gdiag[αi jg
w
i j ]w̄ (3.40b)

δ ȳk+1 = −pLδ x̄k + (1 − p)δ ȳk − pB−Gdiag[αi jg
w
i j ]w̄ (3.40c)

Now, by Lemma 3.3 we know that (3.35) holds and therefore δ z̄∗ is a fixed

point of (3.40). Thus, (3.40a) implies that δ s̄∗ = 0 and (3.40b)− κ1p (3.40c) gives

(κ1 − κ2)δ ȳ∗ = 0

which implies δ ȳ∗ = 0 since κ1 > κ2. Finally using (3.40c) again we have

Lδ x̄∗ + B−Gdiag[αi j ]w̄ = 0

L†Lδ x̄∗ = −L†B−Gdiag[αi j ]w̄

N3δ x̄∗ = −L†B−Gdiag[αi j ]w̄

where N3 = L†L = (In −
1
n1n1

T
n ).

Thus, since N1N3 = N1 and by definition N1δ x̄ = N2
1 x̄ = N1 x̄ = δ x̄ it follows

that

N3δ x̄∗ = −L†B−Gdiag[αi j ]w̄

N1N3δ x̄∗ = −N1L†B−Gdiag[αi j ]w̄

δ x̄∗ = −N1L†B−Gdiag[αi j ]w̄
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Remark 3.2 (Convergent Measures). One interesting property of the system (3.18)

that is evidenced by theorem 3.5 is that even in the absence of noise w̄ = 0 the system

appears to converge each individual state xi (tk ), si (tk ) and yi (tk ) toward the scalar

values x̃(tk ), 1
ri

s̃(tk ) and 1
ri
ỹ(tk ) where

x̃(tk ) := γξT R−1 x̄(tk ), s̃(tk ) := γξT s̄(tk ), ỹ(tk ) := γξT ȳ(tk )

and evolve according to



x̃(tk+1)

s̃(tk+1)

ỹ(tk+1)



=



1 τ 0

0 1 −κ2

0 0 (1 − p)





x̃(tk )

s̃(tk )

ỹ(tk )


Therefore, it is possible to interpret x̃(tk ), s̃(tk ) and ỹ(tk ) as a generalization of the

invariant measure used in section 2.4 to compute the synchronizing frequencyω∗. Here,

instead of a constant (invariant) measure, we have three convergent measures that define

the global behavior of the system.

3.4.2 H2 Performance Optimization

We now proceed to study the effect of noisy measurements and wander on the

output standard deviation of the system (| |vk | |2) when the input ek is white noise

(E[ek eT
l ] = Im+nδ(l − k)). In other words, we seek to minimize

f (κ1, κ2,p,αi j ) = | |vk | |2 =

√√√
E


lim
N→+∞

1

N

N−1∑
k=0

vT
k vk



Since in practice we want to avoid any frequency drift introduced by the

noise, we will assume in this section that (3.39) holds. Thus, all the randomness

88



of the system is concentrated in δxk = N1x(tk ), δsk = N2s(tk ) and δyk = N2y(tk )

and we only study the stochastic process

δzk+1 = N Aδz + N Bek

vk+1 = Cδzk

where N = blockdiag(N1,N2,N2).

This optimization problem is standard in the control theory community and

it can be shown to be equivalent to

min
X,κ1,κ2,p,αi j

f (κ1, κ2,p,αi j ) :=
√

trace[X BN NT BT ] (3.41a)

subject to ρ(N A) ≤ ρ∗ (3.41b)

X = AT NT X N A + CTC (3.41c)

where A is a function of (κ1, κ2,p,αi j ) and ρ∗ < 1. The constraint (3.41b) has been

added in order to maintain the stability of A.

While it is not generally easy to find the global minimum of (3.41), there

has been intensive research to study the continuous time [151] and discrete

time [152] versions of the optimization problem

min
K,X

f (K ) :=
√

trace[X B̄B̄T ] (3.42a)

subject to ρ( Ā) ≤ ρ∗ (3.42b)

X = ĀT X Ā + C̄TC̄ (3.42c)

where Ā := Â + B̂2KĈ2, B̄ := B̂1 + B̂2K D̂21 and C̄ := Ĉ1 and δzk is interpreted as

evolving according to the closed loop standard form system

δzk+1 = ( Â + B̂2KĈ2)δzk + (B̂1 + B̂2K D̂21)ek

vk = Ĉ1δzk ,
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with K being the static output feedback matrix.

Proposition 3.1. The optimization problem (3.41) can be written as (3.42) with

Â = N, Ĉ1 = C,Ĉ2 =



BT
G 0m×n 0m×n

0n×n In 0n×n

0n×n 0n×n In



,

B̂2 =



N1R 0n×m 0n×n 0n×m 0n×n

0n×n B−G N2 0n×m 0n×n

0n×n 0n×m 0n×n B−G N2



,

B̂1 =



0n×m 0n×n

0n×m diag[gd
i ]

0n×m 0n×n



, D̂21 =



diag[gwi j ] 0m×n

0n×m 0n×n

0n×m 0n×n



,

and K =



0n×m τIn 0n×n

−κ1diag[αi j ] 0m×n 0m×n

0n×m 0n×n −κ2In

−pdiag[αi j ] 0m×n 0m×n

0n×m 0n×n −pIn



Proof. The proof of this proposition is simple computation. By definition of B̂2,

K and Ĉ2

B̂2KC2 =



0n×m τN1R 0n×n

−κ1B−Gdiag[αi j ]BT
G 0n×n −κ2N2

−pB−Gdiag[αi j ]BT
G 0n×n −pN2



.

Thus, it is straight forward to see ( Â + B̂2KĈ2) = N A. Analogously we get

B̂1 + B̂2K D̂21 = N B and Ĉ1 = C.

The main difficulty in solving (3.41) instead of (3.42) is that, as we showed
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in Proposition 3.1, our controller K is a nonlinear function of the parameters

K (κ1, κ2,p,α) and cannot be readily obtained using (3.42). Furthermore, Propo-

sition 3.1 also shows that the main source of nonlinearity comes from the prod-

ucts κ1diag[αi j ] and pdiag[αi j ]. This structure is not currently supported by tra-

ditional software distributions, which tend to support only sparsity patterns,

and therefore needs to be implemented.

One particular package that proved to be easily adapted was Hifoo [151,153]

and more precisely in its discrete-time version Hifood [154]. These algorithms

only use gradient information in their implementation of BGS and gradient bun-

dle stages. Thus, to implement discrete time H2 optimization, a new Matlab

subroutine that evaluated theH2 norm f as well as its gradient was created.

The evaluation of the gradient is performed in three stages using the chain

rule. We first compute the gradients of f with respect to Ā := Â + B̂2KĈ2, B̄ :=

B̂1 + B̂2K D̂21 and C̄ := Ĉ1 which are given by

∇Ā f =
1

f
X ĀY, ∇B̄ f =

1

f
X B̄ and ∇C̄ f =

1

f
C̄Y.

Once ∇Ā f , ∇B̄ f and ∇C̄ f are computed we can use the subroutines of hifood

to compute ∂ Ā
∂K , ∂ B̄

∂K and ∂C̄
∂K . Finally, since ∂K

∂κ1
as well as the other parameters’

derivatives can be computed using Proposition 3.1 we obtain

∇κ1 f =

trace

[(
∇Ā f T ∂ Ā

∂K
+ ∇B̄ f T ∂ B̄

∂K
+ ∇C̄ f T ∂C̄

∂K

)
∂K
∂κ1

]
and similarly for other parameters.
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3.5 Experiments

To test our solution and analysis, we implement an asynchronous version of

our algorithm in C using the IBM CCT solution as our code base. Our pro-

gram reads the TSC counter directly using the rdtsc assembly instruction to

minimize reading latencies and maintains a virtual clock that can be directly

updated. The list of neighbors is read from a configuration file and whenever

there is no neighbor, the program follows the local Linux clock. Finally, offset

measurements are taken using an improved ping pong mechanism proposed

in [49].

We run our skewless protocol in a cluster of IBM BladeCenter LS21 servers

with two AMD Opteron processors of 2.40GHz, and 16GB of memory. As

shown in Figure 3.2, the servers serv1-serv10 are used to run the protocol. The

offset measurements are taken through a Gigabit Ethernet switch. Server serv0

is used as a reference node and gathers time information from the different

nodes using a Cisco 4x InfiniBand Switch that supports up to 10Gbps between

any two ports and up to 240Gbps of aggregate bandwidth. This minimizes the

error induced by the data collecting process.

We use this testbed to validate the analysis in Section 3.3. Firstly, we illus-

trate the effect of different parameters and analyze the effect of the network

configuration on convergence (Experiment 1). Secondly, we present a series of

configurations that demonstrate how connectivity between clients is useful in

reducing the jitter of a noisy clock source (Experiment 2). Thirdly, we compare

the performance of the algorithm with respect to NTP version 4 (Experiment 3)

and a software-base version of IBM CCT (Experiment 4). Finally, we verify the
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constant drift effect of path asymmetries predicted by Theorem 3.4 (Experiment

5) and verify the dependence of the optimal parameter values on the network

topology and noise (Experiment 6).

We will use several performance metrics to evaluate our algorithm. The out-

put performance signal vk will be the vector of offset difference between the

leader 1 and every other node i, i.e. vi (tk ) = xi (tk ) − x1(tk ) with i ∈ {2, ...,n}, and

use a normalized version of it herein mentioned as mean relative deviation ,
√

Sn,

as performance metric. In other words,

Sn =
| |vk | |

2
2

n − 1
=

1

n − 1

n∑
i=2

〈
(xi − x1)2

〉
. (3.43)

where < · > amounts to the sample average. We will also use the 99% Confi-

dence Interval CI99 and the maximum offset (CI100) as metrics of accuracy. For

example, if CI99 = 10µs, then the 99% of the offset samples will be within 10µs

of the leader .

Unless explicitly stated, the default parameter values are

p = 0.99, κ1 = 1.1, κ2 = 1.0 and αi j =
ci

|Ni |
. (3.44)

The scalar ci is a commit or gain factor that will allow us to compensate the

effect of τ since αii = ci for every node that is not the leader.

Notice that these values immediately satisfy (i) and (ii) of Theorem 3.3 since

1 − p = 0.01, 2κ1
3p = 0.7407 > κ1 − κ2 = 0.1. The remaining condition can be

satisfied by modifying τ or equivalently c. Here, we choose to fix ci = 0.7 which

makes condition (iii)

τ <
1.2717

µmax
s.

For fixed time step τ, the stability of the system depends on the value of µmax,

which is determined by the underlying network topology.
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Figure 3.6: Effect of topology on convergence: (a) Client-server configu-
ration; (b) Two clients connected to server and mutually con-
nected.

Experiment 1 (Convergence): We first consider the client server configuration

described in Figure 3.6a with a time step

τ = 1s. (3.45)

In this configuration µmax ≈ 1 and therefore condition (iii) becomes τ < 1.2717s.

Figure 3.7(a) shows the offset between serv1 (the leader) and serv2 (the client) in

microseconds. There we can see how serv2 gradually updates s2 until the offset

becomes negligible for the plot scale.
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(a) Client server configuration with τ = 1s.
The client converges and algorithm is stable.
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(b) Two clients mutually connected with τ =
1s. The algorithm becomes unstable.

Figure 3.7: Lost of stability by change in the network topology

Figure 3.7(a) tends to suggest that the set of parameters given by (3.44) and

(3.45) are suitable for deployment on the servers. This is in fact true provided

that network is a directed tree as in Figure 3.5a. The intuition behind this fact is
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that in a tree, each client connects only to one server. Thus, those connected to

the leader will synchronize first and then subsequent layers will follow.

However, once loops appear in the network there is no longer a clear depen-

dency since two given nodes can mutually get information from each other. This

type of dependency might make the algorithm unstable. Figure 3.7(b) shows an

experiment with the same configuration as Figure 3.7(a) in which serv2 synchro-

nizes with serv1 until a third server (serv3) appears after 60s. At that moment

the system is reconfigured to have the topology of Figure 3.6b introducing a tim-

ing loop between serv2 and serv3. This timing loop makes the system unstable.

The instability arises since after serv3 starts, the new topology has µmax ≈

1.5. Thus, the time step condition (iii) becomes τ < 847.8ms which is no longer

satisfied by τ = 1s.

Using (3.25) we can recover the stability of the system by setting

τ = 500ms <
1.2717

2
s = 645.85ms

Figure 3.8 shows how serv2 and serv3 can now synchronize with serv1 after

introducing this change.
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Figure 3.8: Two clients mutually connected with τ = 500ms
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Experiment 2 (Timing Loops Effect): We now show how timing loops can be

used to collectively outperform individual clients when the time source is noisy

(jitter).

We run our algorithm on 10 servers (serv1 through serv10). The connection

setup is described in Figure 3.9. Every node is directly connected unidirection-

ally to the leader (serv1) and bidirectionally to 2K additional neighbors. When

K=0	
   K=2	
  

Figure 3.9: Leader topologies with 2K neighbors connection. Connections
to the leader (serv1) are unidirectional while the connections
among clients (serv2 trhough serv10) are bidirectional

K = 0 the network reduces to a star topology and when K = 4 the servers serv2

through serv10 form a complete graph.

The dashed arrows in Figure 3.9 show the connections where jitter was intro-

duced. To emulate a link with jitter, we added random noise η with values taken

uniformly from {0,1, ..., Jittermax} on both directions of the communication,

η ∈ {0,1, ..., Jittermax}ms. (3.46)

Notice that the arrow only shows a dependency relationship, the ping pong

mechanism sends packets in both directions of the physical communication [49].
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We used a value of Jittermax = 10ms. Since the error was introduced in both

directions of the ping pong, this is equivalent to a standard deviation of 4.69ms3.
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(a) Star topology (K = 0)
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(b) Complete subgraph (K = 4)

Figure 3.10: Offset of the nine servers connected to a noisy clock source

Figure 3.10 illustrates the relative offset between the two extreme cases; The

star topology (K = 0) is shown in Figure 3.10(a), and the complete subgraph

(K = 4) is shown in Figure 3.10(b).

The worst case offset for K = 0 is 5.1ms which is on the order of the standard

deviation of the jitter. However, when K = 4 we obtain a worst case offset of

690.8µs, an order of magnitude improvement.

The mean relative deviation
√

Sn as the connectivity among clients increases

from isolated nodes (K = 0) to a complete subgraph (K = 4) is studied in Fig-

ure 3.11. The results presented show that without any type of error filtering

the network itself is able to perform a distributed filtering that achieves an im-

provement of up to a factor of 6.26 or equivalently a noise reduction of almost

8dB.

Experiment 3 (Comparison with NTPv4): We now perform a thorough com-
3The value 4.69ms is the standard deviation of the sum of two uniform distributed random

variables.
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Figure 3.11: Effect of the client’s communication topology on the mean rel-
ative deviation. As the connectivity increases (K increases)
the mean relative deviation is reduced by factor of 6.26, i.e. a
noise reduction of approx. 8dB.

parison between our algorithm (Alg1) and NTPv4. We will use the one hop

configuration of Figure 3.6b but without the bidirectional link between serv2

and serv3. Here, server serv1 is set as NTP server and as leader of Alg1, server

serv2 has a client running NTPv4 and server serv3 a client running our algo-

rithm.

In order to make a fair comparison, we need both algorithms to use the same

polling interval. Thus, we fix τ = 16sec. This can be done for NTP by setting the

parameters minpoll and maxpoll to 4 (24 = 16secs). The remainder parameter

values for our algorithm are given by

p = 1.98, κ1 = 1.388 and κ2 = 1.374. (3.47)

Figure 3.12(a) shows the time differences between the clients running NTPv4

and Alg1 (serv2 and serv3), and the leader (serv1) over a period of 30 hours.

It can be seen that Alg1 is able to track serv1’s clock keeping a offset smaller

than 10µs for most of the time while NTPv4 incurs in larger offsets during the

same period of time. This difference is produced by the fact that Alg1 is able

to react more rapidly to frequency changes while NTPv4 incurs in more offset
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corrections that generate larger jitter.
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(a) Offset values of NTPv4 and Alg1 for a pe-
riod of 30 hours.
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(b) Cummulative Distribution Function

Figure 3.12: Performance evaluation between our solution (Alg1) and
NTPv4

A more detailed and comprehensive analysis is presented in Figure 3.12(b)

where we plot the Cumulative Distribution Function (CDF) of the offset sam-

ples. That is, the fraction of samples whose time offset is smaller than a specific

value. Using Figure 3.12(b) we compute the corresponding 99% confidence in-

tervals (CI99)

Our algorithm (Alg1) achieves a performance with
√

Sn = 3.1µs, CI99 = 9.5µs

and a maximum offset of 15.9µs, while NTPv4 obtains
√

Sn = 8.1µs, CI99 =

21.8µs and a maximum offset of 28.0µs. Thus, not only Alg1 achieves a reduc-

tion of
√

Sn by a factor of 2.6 (−4.2dB) with respect to NTPv4, but it also obtains

smaller confidence intervals and maximum offset values.

Finally, we investigate the speed of convergence. Starting from both clients

synchronized to server serv1, we introduce a 25ms offset. Figure 3.13 shows

how Alg1 is able to converge to a 20µs range within one hour while NTPv4

needs 4.5hours to achieve the same synchronization precision. In summary, not

only can our algorithm achieve better performance than NTPv4, but it can also
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Figure 3.13: Offset values of NTPv4 and Alg1 after a 25ms offset intro-
duced in serv1.

converge faster.

Experiment 4 (Comparison with IBM CCT): We now proceed to compare the

performance of our algorithm (Alg1) with respect to IBM CCT. Notice that un-

like IBM CCT, our algorithm does not perform any previous filtering of the

offset sample, the filtering is performed instead by calibrating the parameters

which mostly depend on the polling interval τ chosen. Here we use ci = 0.70,

τ = 250ms, κ1 = 0.1385, κ2 = 0.1363 and p = 0.62.

10 20 30 40 50 60 70 80 90 100 160
0

1

2

3

4

5

6

7

8

9

Jittermax (µs)

M
ea

n
R
el
a
ti
v
e
D
ev

ia
ti
o
n
(µ

s)

 

 

alg1

cct

(a) Mean relative deviation
√

Sn

10 20 30 40 50 60 70 80 90 100 160
0

5

10

15

20

25

30

35

Jittermax (µs)

M
a
x
im

u
m

O
ff
se
t
(µ

s)

 

 

alg1

cct

(b) Maximum offset

Figure 3.14: Performance evaluation between our solution (Alg1) and IBM
CCT

In Figure 3.14(a) we present the mean relative deviation
√

Sn for two clients

connected directly to the leader as the jitter is increased from Jittermax = 0µs
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(no jitter) to Jittermax = 160µs with a granularity of 1µs. The worst case offset is

shown in Figure 3.14(b). Each data point is computed using a sample run of 250

seconds.

Our algorithm consistently outperforms IBM CCT in terms of both
√

Sn and

worst case offset. The performance improvement is due to two reasons. Firstly,

the noise filter used by the IBM CCT algorithm is tailored for noise distributions

that are mostly concentrated close to zero with sporadic large errors. However,

it does not work properly in cases where the distribution is more homogeneous

as in this case. Secondly, by choosing δκ = κ1−κ2 = 0.002 � 1 and the discussion

in Section (3.2) we can see that κ in (3.14) becomes very small, which makes the

algorithm more sensitive to frequency mismatches than offsets. This makes the

algorithm very robust to offset errors.

Experiment 5 (Frequency drift without leader): We now proceed to experi-

mentally verify that without leader, the system tends to constantly drift the fre-

quency. Our analysis predicts that even the minor bias in the offset measure-

ments will produce this effect. To verify this phenomenon, we use the network

topology in Figure 3.6b with τ = 0.5s and wait for the system to converge.
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Figure 3.15: Frequency drift

After 1000s the timing process of serv1 is turned off. Figure 3.15 shows how
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the offsets of serv2 and serv3 start to grow in a parabolic trajectory characteristic

of a constant acceleration, i.e. constant drift. After 6600s serv1 is restarted and

the system quickly recovers synchronization. A second order fit of the faulty

trajectory was performed obtaining a drift of approximately −250 ns/s2. While

this is not quite significant in the first few minutes, it becomes significant as time

goes on.

Experiment 6 (Jitter and Wander Tradeoff): Finally, we use the proposed H2

optimization scheme to show how the optimal parameter values depend on

the different noise condition within the network described in Figure 3.16. We

consider three different noise scenarios in which we either add jitter between

server serv1 and servers serv2 and serv3, and/or add wander on severs serv2-

serv7. In all the cases we use τ = 0.5s and make offset measurements through

the InfiniBand switch to minimize the any additional source of noise.
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Figure 3.16: Network scenarios and optimal parameters

The jitter is generated by adding in both directions of the physical com-
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munication a random value η similarly to Experiment 2(c.f. (3.46)), but with

a Jittermax = 100µs. This generates an aggregate offset measurement noise of

zero mean and standard deviation of 40.8µs. On the other hand, the wander is

generated by adding gaussian noise with zero mean and standard deviation of

0.2ppm in the si (tk ) adaptations. As discussed in Section 3.4, this noise can be

used to emulate the wander of a bad quality clock.

We used different values of gwi j and gd
i to differentiate the noise conditions in

the optimization scheme. The large jitter scenario is represented by gd
i = 1e−3∀i,

gw21 = gw31 = 100 and gwi j = 1 otherwise. The large wander scenario is represented

by gd
i = 1e − 1 ∀i and gwi j = 1. Finally, the large jitter and wander scenario is

represented using gd
i = 1e − 1 ∀i, gw21 = gw31 = 100 and gwi j = 1 otherwise. The

output parameter values for all three cases are also present in Figure 3.16.
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Figure 3.17: H2 Performance optimization: offset variance vs server num-
ber

Figure 3.17 shows the standard deviation of the offset between servers serv2-

serv7 and serv1 in the three experimental scenarios and for the three different

sets of parameters shown in Figure 3.16. It can be seen that although the config-

uration tuned for jitter performs very well in cases with large jitter, it performs

quite poorly in scenarios with large wander. Similarly, the configuration tuned
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for wander does not perform well in high jitter scenarios.

However, the configuration tuned for jitter and wander is able to provide

acceptable performance in all three experimental scenarios. Thus, we experi-

mentally demonstrate a fundamental tradeoff between offset and wander.
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CHAPTER 4

SYNCHRONIZATION ON POWER NETWORKS

In this chapter we focus on the study of the synchronization of a power grid

and how its performance is affected by the different conditions of the network.

Using a local stability analysis similar to the one conducted for coupled oscil-

lators in section 2.4, we relate the damping of the network with the different

network parameters and provide an updating direction that decreases it. The

analysis suggests that one can use power scheduling or modify line impedances

in order to prevent saddle-node bifurcations. However, this result triggers more

questions than answers. Firstly, many of these parameters are usually set using

the output of an OPF with a given economic performance objective. Secondly,

even if it is possible to include the damping as part of the OPF problem, it is not

even clear that this metric is suitable to measure the stability of a power grid.

In this chapter we shall answer all these questions. In section 4.1 we describe

the dynamics of a power network, the different stability issues it can experience

and the standard OPF problem. We also describe a simplified model in section

4.1.3, closely related to coupled oscillators, that will be key in understanding

the interplay between network parameters and stability. Section 4.2 then relates

the damping of a power network with the second smallest eigenvalue of a state

dependent weighted Laplacian. We then characterize the dependence of the

eigenvalue, a.k.a. algebraic connectivity, of this Laplacian in term of its weights

in section 4.3, and derive updating directions that improve the damping of a

network in 4.3.1 and 4.3.2. We illustrate our findings using numerical examples

in section 4.5.1.

We then focus on understanding which performance metric is more efficient
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in characterizing the system’s stability. With this aim, we bring in the pseu-

dospectral abscissa in section 4.4 and show how it can be used to measure and

optimize voltage stability margins, oscillations and robustness. This naturally

leads to our Dynamics-aware OPF formulation. Finally, we illustrate several

properties of our new optimization framework using two different test cases,

including the widely used IEEE 39-bus New England power grid test case in

section 4.5.2.

4.1 Power Network Modeling

We now proceed to describe two models commonly used in the study of OPF

and power system dynamics: static and dynamic models. Each one has its spe-

cific use and the level of detail depends on the problem in consideration.

4.1.1 Static Model

The static model of a power network defines the physical relationship that the

state at each bus must satisfy for the system to be at equilibrium. In this model,

the state is solely represented by the complex voltage Vi = |Vi |e jθi at each bus

i ∈ V , which in order to be at equilibrium, must satisfy the flow conservation

equations, also known as power flow equations. These equations basically state

that the surplus (or deficit) in generation at a given bus should match the out-

going (incoming) power flow to (from) the neighboring buses and ground, i.e.

|Vi |
2y∗ii +

∑
j∈Ni

Si j = PGi + jQGi − (PDi + jQDi ). (4.1)
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Here, PGi + jQGi is the complex power generated, PDi + jQDi is the complex

power demanded at bus i, Si j = Pi j + jQi j := Vi (Vi − Vj )∗y∗i j is the complex

line flow from i to j, yii is the bus shunt admittance and yi j := gi j + jbi j is the

line admittance. Loads are usually modeled as constant impedance (Z), con-

stant current (I) or constant power (P). When the loads are modeled by constant

impedance or constant current models, PDi and QDi are functions of the voltage

magnitude at the bus. A well-accepted model for static loads is the ZIP model

which is a convex combination of the three, i.e.

PDi = P0,i


a1,i

(
|Vi |

V0,i

)2

+ a2,i

(
|Vi |

V0,i

)
+ a3,i


 (4.2a)

QDi = Q0,i


b1,i

(
|Vi |

V0,i

)2

+ b2,i

(
|Vi |

V0,i

)
+ b3,i


 (4.2b)

Since this model is sufficient to characterize the static properties of the net-

work, such as the existence of a stationary solution of the power flow equations

(4.1), voltage magnitudes |Vi |, line flows Pi j and Si j , and losses Pi j + Pji, it is used

for the computation of the optimal power flow and the study of static voltage

stability.

To simplify notation, we will use from now on xs := [|V |T θT ]T as the vector of

the static network states, us := [PT
G QT

G]T as the vector of static control variables

and vs := [PT
0 aT

1 aT
2 aT

3 QT
0 bT

1 bT
2 bT

3 ]T as the vector of load parameters. Thus, the

power flow equations (4.1) can be compactly defined as F (xs,us,vs) = 0.

Optimal Power Flow

Let fi (Vi,PGi ,QGi ) denote the cost function associated with bus i. In most cases,

fi depends solely on PGi but it can be extended to more general scenarios. Then,
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the optimal power flow can be formulated as

OPF : minimize
xs ,us

c(V,PG,QG) :=
∑
k∈N

fi (Vi,PGi ,QGi ) (4.3)

subject to

F (xs,us,vs) = 0 (4.4a)

Pmin
i ≤ PGi ≤ Pmax

i , ∀i ∈ N (4.4b)

Qmin
i ≤ QGi ≤ Qmax

i , ∀i ∈ N (4.4c)

Vmin
i ≤ |Vi j | ≤ Vmax

i , ∀i ∈ N (4.4d)

Pi j ≤ Pmax
i j , ∀i j ∈ L (4.4e)

|Si j | ≤ Smax
i j , ∀i j ∈ L (4.4f)

The list of methods to solve this problem is vast. Some of the most commonly

used are primal dual interior point method [94], trust region based augmented

Lagrangian [95], newton method [96] and successive linear programming [97].

Voltage Stability

Voltage stability refers to the ability of the system to preserve voltage magni-

tudes within its nominal values and avoid voltage collapse. A voltage collapse

occurs when changes on us or vs make two solutions of (4.4a) coalesce and dis-

appear in a Saddle Node Bifurcation. This is evidenced by the presence of a

real eigenvalue of the Jacobian matrix

J (xs,us,vs) = Dxs F (xs,us,vs) (4.5)

on the imaginary axis.
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It is important to notice that the OPF problem (4.3)-(4.4) guarantees voltage

stability since its solution satisfies the power flow constraints (4.4a). However,

the stability margins may not be large and a small fluctuation on the demand

can thus produce a voltage collapse.

This has motivated the development of optimization-based techniques that

define some distance measure, compute the smallest distance to voltage collapse

(e.g. [67, 155]) and improve it [66, 68, 156, 157]. These developments have led to

a solid integration of voltage stability measures as constraints or as part of the

objective function of the OPF problem [103–109]. Yet, none of them considers the

effect of the outcome of these solutions on the dynamics of the power system.

4.1.2 Dynamic Model

The dynamics of a power network are represented by a set of differential alge-

braic equations (DAEs) [158]

ẋ = f (x, z,u,v) (4.6a)

0 = g(x, z,u,v). (4.6b)

where x and z are the slow and fast state variables, u are the control inputs, such

as power generation, active voltage regulators (AVR) set points, transformers

taps, etc., and v are the exogenous parameters such as power demand. Equa-

tion (4.6a) represents the dynamics of the system devices, including generators,

power electronics and controllers, and (4.6b) are the algebraic equations of the

generators stators, power electronics and network power flows.

Equations (4.6a)-(4.6b) form a more detailed model than the static
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model(4.1)-(4.2) and include in (x, z), u and v, the values of xs, us and vs, re-

spectively. In fact, equation (4.4a) is a subset of (4.6a)-(4.6b).

Remark 4.1. It is important to notice that when xs, us and vs satisfy F (xs,us,vs) = 0,

we can find x, z such that f (x, z,u,v) = 0 and g(x, z,u,v) = 0. This will be used in

later sections to formulate our Dynamics-aware OPF. Overall, the level of detail in the

dynamic model is essential when one wants to study dynamic phenomena such as small

signal oscillations.

Small Signal Oscillations

Small signal oscillations are the effect of a Hopf Bifurcation in which a sta-

ble equilibrium point becomes unstable and a limit cycle appears, or the ef-

fect of poorly damped modes of stable operating points. These oscillations can

be studied by linearizing the system (4.6a)-(4.6b) around an equilibrium point

(x∗, z∗,u∗,v)

ẋ = [Dx f ]x + [Dz f ]z + [Du f ]u (4.7a)

0 = [Dxg]x + [Dzg]z + [Dug]u (4.7b)

and assuming that Dzg(x∗, z∗,u∗,v) is nonsingular1 to obtain reduced system

ẋ = Ax + Bu (4.8)

where

A =
[
Dx f − Dz f

(
Dzg

)−1 Dxg
]

(x∗, z∗,u∗,v) (4.9)

and

B =
[
Du f − Dz f

(
Dzg

)−1 Dug
]

(x∗, z∗,u∗,v).

1The nonsingularity of Dzg(x∗, z∗,u∗,v) is a standard assumption in power system stability
studies that is generally satisfied, see e.g. [159].
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The presence of small signal oscillations is evidenced by the presence of a

complex conjugate pair of eigenvalues of A close to the imaginary axis. As pre-

viously mentioned, small signal stability can usually be improved by designing

controllers (e.g. PSS and FACTS) such that in closed loop A has eigenvalues with

smaller damping ratio [70, 71, 80–86, 86–89]. However, none of these solutions

considers the fact that (4.9) depends on the solution of the power scheduling

(encoded in u∗) and that oscillations can appear if the market solution moves

the system towards a more stressed condition. This generates the need for re-

dispatching procedures that correct the scheduling in order to avoid small sig-

nal instabilities.

The current way of dealing with the above issue is by either iteratively

adding constraints to successive OPF instances based on eigenvalues sensitiv-

ity information [102,110,111] or solving an OPF instance using an interior point

method with a constraint on the real part<[λi] of every critical eigenvalue [112].

Besides the computational complexity of these methods (one of them has to

solve several OPFs and the others compute second order sensitivity of eigen-

values), it is also important to notice that most of them essentially use max<[λi]

as a stability constraint to avoid Hopf Bifurcations, and disregard any other per-

formance or robustness metric in the optimization. The only exception is [102]

which successively adds approximate damping ratio constraints to each OPF

instance solved. Using the function max<[λi] as stability measure is undesir-

able because it can make the system exhibit late amplitude oscillations as one

gets closer to a local minimum of it [122,123]. On the other hand, adding damp-

ing ratio constraints on the eigenvalues has no effect on voltage stability, as a

real eigenvalue can be arbitrarily close to the imaginary axis without meeting

any damping constraint. These difficulties directly motivates us to formulate a
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Dynamics-aware OPF.

4.1.3 Network Preserving Dynamic Model

Finally, we describe a simplified version of (4.6) that was first introduced by

Bergen and Hill in 1981 [119]. The Bergen-Hill model is derived by making

several simplifying assumptions:

1. Lossless: Every transmission line has zero conductance, i.e. yi j = jbi j .

2. Decoupling: The power flow equations (4.1) can be decoupled such that the

phases φi depend only on Pi and the voltage magnitudes |Vi | depend on

Qi.

3. Load model: Loads are modeled assuming constant reactive power QDi :=

Q0
Di

and frequency dependent real power PDi (φ̇i) := P0
Di

+ Di φ̇i.

4. Generator model: Generators are modeled by a constant internal voltage

and transient reactance with swing dynamics.

While assumption 1 is very common in the literature and is not necessarily

critical, assumption 2 and 3 together have a significant impact on the model.

For example, since by assumption 3 the reactive power is constant, assumption 2

implies that the voltage magnitude at every bus is constant too. This allows us to

eliminate the imaginary part of equation (4.1), which together with assumption

1 gives

Pi := PGi − PDi =
∑
l∈Ni

|Vi | |Vj |bi j sin(φi − φ j ),

with Pi being the power injection at bus k.
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Finally, assumption 4 allows us to substitute the generator with a constant

voltage internal bus with a lossless transmission line. Thus, we can completely

describe the state of each generator using φi and ωi = φ̇i which evolve according

to

Mi φ̈i + Di φ̇i = PGi − Pei ∀k ∈ {1, ...,m}.

where Mi and Di are the generator’s inertia and damping, PGi is the mechanical

power, Pei is the electrical real power that the network is demanding from the

generator and m is the number of generators.

Thus, given a network composed by n buses, we obtain an extended network

with m generator buses plus n load buses whose dynamics are described by

Mi φ̈i + Di φ̇i = Pi +
∑
l∈Ni

|Vi | |Vj |bi j sin(φi − φ j ) i ∈ {1, ...,m} (4.10a)

Di φ̇i = Pi +
∑
l∈Ni

|Vi | |Vj |bi j sin(φi − φ j ) i ∈ {m + 1, ...,m + n} (4.10b)

See Figure 4.1(a) for an illustration of a sample power network with four buses

and two generators.

(a) Real Power Network (b) Equivalent Network

Figure 4.1: Power Network Representations
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Equation (4.10) can also be compactly expressed in vector form using

M φ̈ + Dφ̇ = −B
(

f (b) ◦ sin(BTφ)
)

+ P, (4.11)

where (a ◦ b)i = aibi is the Hadamard product between the vectors a and b, and

( f (b))i j = |Vi | |Vj |bi j is the maximum instantaneous power flow between i and

j. The diagonal matrices M and D represent the generators’ inertia, generators’

damping and loads’ frequency coefficients, i.e.

(M)i j =


Mi, if i = j i ∈ {1, ...,m},

0 o.w.,
(D)i j =


Di if i = j,

0 o.w..

We will use Dmax , Dmin and Mmax to denote the nonzero extreme values that D

and M can reach. The vector P ∈ Rm+n is the power injection at each bus, i.e.

Pi =


PGi ∀i ∈ {1, ...,m}

−PDi ∀i ∈ {m + 1, ...,m + n}.

And the matrix B ∈ R(m+n)× (m+n)(m+n−1) is the incidence matrix of the complete

graph.

Remark 4.2. The matrix B as defined here does not capture (alone) the topology of the

network. It is the conjunction of B and b = (bi j ) that captures the topology since bi j > 0

if and only if i j represent a line of the extended power network graph G = (V,E), i.e. iff

i j ∈ E. In this way the addition of a line does not change the dimension of B.

4.2 Effect of Topology

The damping of (4.11) can be locally estimated by computing the eigenvalues of

the Jacobian Jφ∗ of the linearized version of (4.11) around a given equilibrium
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(φ∗, φ̇∗ = 0),

Mδφ̈ + Dδφ̇ + L(w(φ∗))δφ = 0, (4.12)

where the matrix L(w(φ∗)) := Bdiag[w(φ∗)]BT represents the weighted Lapla-

cian of the graph G with weights wi j (φ∗) = |Vi |
���Vj

��� bi j cos(φ∗j − φ
∗
i ), and captures

several topological properties of the network (see e.g. [120]).

When (φ∗,0) is stable, L(w(φ∗)) is positive semidefinite with, under generic

conditions, only one zero eigenvalue ν1(L(w(φ∗))) with eigenvector 1m+n. This

implies that the smallest eigenvalue of (4.12), λ1, is zero. The existence of this

zero eigenvalue is due to the rotational symmetry of the system, sin(BT (φ +

1m+n)) = sin(BTφ).

If Di � Mi, it is possible to approximate (4.11) by setting M = 0 [160]. Then,

(4.12) becomes a first order system and the damping can be upper-bounded by,

<[λ2] ≤ − cos(α∗)
ν2(L(w(φ∗)))

Dmax
, (4.13)

where α∗ := ∠(D1,1) is the angle between vectors D1 and 1; we use<[·] and =[·]

to denote the real and imaginary part of a complex element.

Equation (4.13) suggests a correlation between <[λ2] and the algebraic con-

nectivity ν2(L(w(φ∗))); however, a priori this relation seems to be only valid

when Di � Mi. The problem is that when Di 4 Mi, the computation of the

eigenvalues of (4.12) is usually done by introducing the state variables δω = δφ̇

and interpreting (4.12) as a first order linear system of dimension 2m + n. This

approach hides the rich symmetry inherent to M , D and L(w(φ∗)) and makes

the generalization of (4.13) hard.

In this thesis we use a more elegant approach to relate the damping of (4.11)

with ν2(L(w(φ∗))). Using Matrix Polynomial Theory [161], we show that the
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when the network is close to a bifurcation [162] (4.13) still holds. This approach

is summarized next.

Instead of solving the linear eigenvalue problem of finding pairs (λi,vi) ∈

C ×C2m+n such that (λi I − Jφ∗ )vi = 0, we solve the quadratic eigenvalue problem

[163] of finding (λi, xi) ∈ C×Cm+n such that Q(λi)xi = 0 with Q(λ) = Mλ2+Dλ+

L(w(φ∗)). It is easy to show that Q(λ) has 2(m + n) eigenvalues and that if λi is

an eigenvalue of Jφ∗ , it is also an eigenvalue of Q(λ) [161]. The difference in the

number of eigenvalues is due to the fact that M has n zero eigenvalues, which

is reflected in Q(λ) with the presence of n infinite eigenvalues. However, since

we are only concerned about the dominant eigenvalue of (4.12), these infinite

eigenvalues are not of interest to us.

This is a more natural formulation, since now the symmetry of M , D and

L(w(φ∗)) implies that if xi is a right eigenvector of Q(λ) then its complex conju-

gate x̄i is a left eigenvector, and given the finite pair (λi, xi) the following rela-

tionship holds

λi =


−

l (xi )
d(xi )

if m(xi) = 0,

−d(xi )±
√

d(xi )2−4m(xi )l (xi )
2m(xi )

otherwise.
(4.14)

where m(x) = x̄T M x, d(x) = x̄T Dx and l (x) = x̄T L(w(φ∗))x. Notice that since

M ≥ 0, D > 0 and L(w(φ∗)) ≥ 0, m(x), d(x) and l (x) are real and for any x , 0,

m(x) ≥ 0, d(x) > 0 and l (x) ≥ 0.

The next theorem extends (4.13) to some cases where M , 0.

Theorem 4.1 (Damping Bound). When (4.11) is close to a bifurcation, the dominant

eigenvalue λ2 of (4.12) is real and bounded by (4.13).

Proof. Since the system is assumed to be close to a bifurcation, then<[λ2] must
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close to the imaginary axis, i.e. |Re[λ2]| � Dmin
Mmax

. Thus, it follows from (4.14) that

λ2 is real (=[λ2] = 0).

We first show that <[λ2] ≤ − l (x2)
d(x2) , which is trivial from (4.14) if m(x2) = 0.

Thus consider the case of m(x2) > 0. Since =[λ2] = 0, (4.14) implies d(x2)2 >

4m(x2)l (x2). Thus, using the fact that
√

1 − x ≤ 1 − 1
2 x and (4.14), we get

<[λ2] ≤
−d(x2) + d(x2)

(
1 − 1

2 ( 4m(x2)l (x2)
d(x2)2 )

)
2m(x2)

= −
l (x2)
d(x2)

.

Therefore, whenever =[λ2] = 0,<[λ2] = λ2 ≤ −
l (x2)
d(x2) .

The main problem with this bound is that since l (x) is not positive definite, it

cannot be readily lower bounded by a positive value. We therefore need to use

the fact that x2 is an eigenvector of Q(λ) to obtain an appropriate lower bound

on l (x2).

Since x2 is an eigenvector and λ2 , 0, then it follows from 1T
m+nLφ∗ = 0 and

Q(λ2)x2 = 0 that,

0 = 1T
m+nQ(λ2)x2 = 1T

m+n(λ2
2M + λ2D + Lφ∗ )x2

= 1T
m+n(λM + D)x2.

So, when λ2 �
Dmin
Mmax

, x2 ∈ ker[1T
m+nD] and it follows that the biggest an-

gle that x2 can achieve with respect to ker(1T ) is α∗ and therefore l (x2) ≥

cos(α∗) ‖x2‖
2 > 0. Finally, since d(x2) ≤ Dmax ‖x2‖

2, we get (4.13).
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4.3 Improving Damping of a Stable Equilibrium

This section introduces some updating rules on the network parameters that

improve the damping of a power network close to a saddle node bifurca-

tion. In order to do this we need to know how the second smallest eigenvalue

ν2(L(w)) =: ν2(w) of the Laplacian L(w) changes with w. There are several nice

properties of ν2(w) when L(w) is positive semidefinite, see e.g. [120]. In par-

ticular, ν2(w) is a concave function of w and homogeneous of degree one , i.e.

ν2(λw) = λν2(w).

Here we are interested in computing ∂
∂wi j

ν2(w) whenever it is possible. If for

given w the multiplicity of ν2(w) is one, ∇wν2(w) is defined and can be readily

computed by expressing ν2(w) as

ν2(w) = min
{x:‖x‖=1,〈x,1〉=0}

xT L(w)x

= min
x

max
µ1,µ2

W (w, x, µ1, µ2)

= x∗(w)T L(w)x∗(w)

where W (w, x, µ1, µ2) is the Lagrangian and x∗(w) is the unique eigenvector cor-

responding to ν2(w). Then, we can use envelope theorem [164] to compute

∂ν2(w)
∂wi j

= (x∗(w)i − x∗(w) j )2.

Thus, the gradient can be compactly expressed as ∇wν2(w) = px∗ (w), where

px∗ (w) := diag[BT x∗(w)x∗(w)T B]1m+n, and diag[A] is the matrix operator that

projects all the off diagonal elements to zero and keeps the diagonal untouched.

Similarly, we will use diag[a] to denote the operator that converts the vector a in

a diagonal matrix.

When ν2(w) is not simple, there are several x∗(w) that solve this optimization
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problem. In this case∇wν2(w) is in general not defined, but it is easy to show that

for every x∗(w), px∗ (w) ∈ ∂
+
w ν2(w), where ∂+g(w) := {p|〈p, w̄ − w〉 ≥ g(w̄) − g(w)}

is the concave super-differential of the function g(w). Although in general

there is no guarantee of local improvement for every direction p ∈ ∂+g(w),

subgradient-type iterations can still reach the global optimum. See [165] for

general treatment of subdifferentials of eigenvalues of symmetric matrices.

One interesting consequence of this derivation is that (px∗ (w))i j ≥ 0. This

implies that ν2(w) is a nondecreasing function of its elements and the only way

to reduce its value is by decreasing some wi j . The main difficulty in our case

is that the weights wi j depend on the parameters of the system in a nonlinear

manner, i.e. wi j = |Vi |
���Vj

��� bi j cos(φ∗j − φ
∗
i ) where φ∗ is a solution to

F (φ,b,P) = −B f (b) ◦ sin(BTφ) + P = 0, (4.15)

for fixed line inductances b and fixed power schedule P. Therefore, it is not clear

at first sight how changes on b and P affect the corresponding w.

We assume that the network is in a stable steady state such that the corre-

sponding φ∗ is stable and L(w(φ∗)) has only one zero eigenvalue, i.e. ν2(w) > 0.

In the rest of this section we show how changing the network parameters affects

ν2(w), and how these changes are influenced by the topology of the network and

the current operating point.

4.3.1 Power Scheduling

In this subsection we show how power injection changes can locally improve

the damping of a power network. We assume fixed line inductances b = (bi j )
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and full control of P within the interior of feasible closed set BP = {P : Pmin ≤

P ≤ Pmax}. That is, we can not only change the values of Pgi , but we can also

change, up to a certain extent, Pdi . Although this used to be an unreasonable as-

sumption, the introduction of renewable energy sources in the distribution part

of the network can enable the design of coordination mechanism that produce

the desired changes on Pd .

Since b is assumed to be fixed, F (φ,b,P) = F (φ,P), and thus every equilibria

φ∗ satisfies, F (φ∗,P) = 0. Here, we will focus on how small changes in the power

scheduling P + δP affect the position of the equilibrium φ∗ + δφ.

Although in principle δφ, δP ∈ Rm+n, only a subspace of Rm+n is of interest.

Since the network is lossless, 〈P,1m+n〉 = 0 is always satisfied. Hence we will

only consider changes δP in the power schedule s.t. δP ∈ ker (1T ). Similarly,

since w(φ∗ + κ1) = w(φ∗) ∀κ ∈ R, we will restrict our attention on changes

δφ ∈ ker (1T ). The relationship between δP and δφ is then captured by

F (φ∗ + δφ,P + δP) = F (δφ, δP) = 0. (4.16)

Theorem 4.2 (Controllability of δφ w.r.t δP). Given an equilibrium point φ∗ of

(4.11) with simple zero eigenvalue, and a power scheduling P satisfying (4.15). There

exists a neighborhood of P, BP ⊂ P + ker(1T ), and function δφ(δP) such that

F (δφ(δP), δP) = 0, ∀δP ∈ BP − P and δφ(BP) is open relatively to ker(1T
m+n),

i.e. δφ is fully controllable by δP.

Moreover, d(δφ)
d(δP) can be computed as

d(δφ)
d(δP)

= L(w(φ∗))†, (4.17)

where L(w(φ∗))† is the Moore-Penrose pseudoinverse of the weighted Laplacian

L(w(φ∗)).
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Proof. The proof of this theorem comes from applying implicit function theo-

rem (see e.g. [121]) on a properly defined function. Notice that ∂
∂φF (φ,P) =

−L(w(φ∗)), and ∂
∂P F (φ,P) = Im+n. Thus, since L(w(φ∗)) is singular, implicit func-

tion theorem cannot be directly applied. However, our restriction of (δφ, δP) to

the subspace ker(1T
m+n) × ker(1T

m+n) does not suffer this problem.

Since both vectors are restricted to ker(1T
m+n), by choosing orthonormal basis

of column vectors {Tj } we can write

δφ = T x and δP = T y

where the matrix T = [Tj ] ∈ R(m+n)× (m+n−1) is a full column rank matrix,

TTT = Im+n−1 and TTT = Im+n −
1

m+n1m+n1
T
m+n is the orthogonal projection onto

ker(1T
m+n).

Now, define H (x, y) = TT F (T x,T y). Since 1T
m+nB = 0, F (φ,P) ∈ ker(1T

m+n)

provided P ∈ ker(1T
m+n). Thus, F (T x,T y) = 0 if and only if H (x, y) = 0, and H

represents the same constraints as F when restricted to ker(1T ) × ker(1T ). Differ-

entiating H with respect x and y gives

∂

∂x
H (x, y) = −TT L(w(φ∗))T , and

∂

∂y
H (x, y) = Im+n−1.

Since ∂
∂x H (x, y) is nonsingular, by implicit function theorem, there exist

neighborhoods of 0, Bx and By, and a function x(y) such that H (x(y), y) = 0

and x(By) = Bx .

Finally, since H (x(y), y) = 0 on By,

d
dx

H (x(y), y) =
∂

∂x
H (x(y),P)

dx(y)
dy

+
∂

∂y
H (x(y), y)

= −TT L(w(φ∗))T
dx(y)

dy
+ Im+n−1 = 0
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and therefore dx
dy = (TT L(w(φ∗))T )−1.

Defining δφ(δP) = T x(TTδP) and BP = P + TBy gives the first statement of

the theorem. Equation (4.17) follows from d(δφ)
d(δP) = T dx

dyTT , (TT L(w(φ∗))T )−1 =

TT L(w(φ∗))†T and the fact that TTT L(w(φ∗))†TTT = L(w(φ∗))†.

Using (4.17) we can predict how small changes of the power affects the po-

sition of the equilibria, which in turn affects the value of w(φ) (recall wi j =

|Vi |
���Vj

��� bi j cos(φ j − φi)). Thus, we can use Theorem 4.2 to compute the changes of

the weights δw as

δw =
dw

d(δP)
δP =

(
∂w

∂φ

) (
d(δφ)
d(δP)

)
δP

=
(
−diag[ f (b) ◦ sin(BTφ∗)]BT

) (
L†(w(φ∗))

)
δP

=: A(φ∗)δP

where we use the fact

∂w

∂φ
= −diag[ f (b) ◦ sin(BTφ)]BT . (4.18)

Ideally, we would like to move δw ∈ span(px∗ (w(φ∗))), but we are con-

strained only to the subspace span(A(φ∗)). Therefore, a natural alternative is

to set δP such that the corresponding δw is the orthogonal projection of px∗ (w)

onto span(A(φ∗)). This is done by setting δP = γA(φ∗)†px∗ (w(φ∗)) which gives

δw = A(φ∗)δP = γA(φ∗)A(φ∗)†px∗ (w(φ∗)) .

Remark 4.3. Although the updating direction of this section modifies the values of

Pg := (Pgi )
T and Pd := (Pdi )

T , it is possible to constraint its actions only to Pg by pro-

jecting δP onto S = ker(1T
m+n) ∩ BP and setting Pd,min = Pd,max = Pd in the definition

of BP. We denote this projection operation onto the set S by ΠS[·], and similarly use

ΠBP [·] to define the analogous for BP. Note that ΠBP [·] enforces the constraint of BP.
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4.3.2 Impedance Adaption

In this subsection we study how the changes of line inductances bi j , due to

changes in the network topology or the utilization of FACTS devices [166], can

affect the operating point of a network. Using this result, we will show that it is

possible that the addition of a line can weaken the condition of the network, i.e.

ν2(w) is reduced.

In order to measure how changes of δb affect the weights w, we proceed in

the same manner as in Theorem 4.2. We start by computing the total derivative

dw
d(δb) which is given by

dw
d(δb)

=
∂w

∂b
+
∂w

∂φ

d(δφ)
d(δb)

. (4.19)

Since w(φ,b) = f (b) ◦ cos(BTφ), it is straightforward to show that

∂w

∂b
= diag[v ◦ cos(BTφ)] (4.20)

where the elements of the vector v are (v)i j = |Vi |
���Vj

��� if i j ∈ E and (v)i j = 0

otherwise.

The main difficulty again rises in computing how the changes of b, i.e. δb,

affect φ∗. This is assessed in the next theorem. As in Theorem 4.2, we restrict

our attention to δφ ∈ ker(1T ). We do not impose any restriction on δb besides

the physical ones, i.e. b + δb ∈ {b : bmin ≤ b ≤ bmax}.

Theorem 4.3 (Controllability of δφw.r.t δb). Given an equilibrium point φ∗ of (4.11)

with a simple zero eigenvalue, and bus admittances b such that F (φ∗,b) = 0. There

exists a neighborhood of b, Bb, a neighborhood of φ∗, Bφ∗ , and function δφ(δb) such

that

F (δφ(δb), δb) = 0, ∀δb ∈ Bb − b
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and φ∗ + δφ(b + Bb) = Bφ∗ . Moreover, d(δφ)
d(δP) can be computed as

d(δφ)
d(δb)

= −L(w(φ∗))†Bdiag[v ◦ sin(BTφ∗)]. (4.21)

Proof. Since δφ is restricted to ker(1T ) we can use the same transformation T to

transform F (δφ, δb) = 0 into

H (x, δb) = TT F (T x, δb) = 0.

The Jacobian ∂
∂x H (x, δb) = −TT L(w(φ∗))T remains the same, and

∂

∂b
H (x, δb) = −TT Bdiag[v ◦ sin(BTφ)].

Therefore, since ∂
∂x H (x, δb) is nonsingular, we can apply again implicit function

theorem to get
dx(δb)
d(δb)

= −

(
∂

∂x
H (x, δb)

)−1
∂

∂b
H (x, δb).

Equation (4.21) follows after reverting the change of variables.

Now substituting (4.18), (4.20) and (4.21) into (4.19) we obtain

dw
db
= diag[v ◦ cos(BTφ∗)]

+ diag[ f (b) ◦ sin(BTφ)](R)diag[v ◦ sin(BTφ∗)]

where R = BT L(w)†B is the effective resistance matrix when the weights w are

interpreted as conductances. Ri j,kl represents the voltage difference between

nodes i and j when a current of 1 unit is injected in i and subtracted from j [167].

Notice that in our case, it is possible that some of the weights wi j are negative.

Nonetheless L(w) is positive semi-definite with a single zero eigenvalue and
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therefore Ri j,i j > 0. Thus, we can still interpret Ri j,i j as a measure of the distance

between i and j.

Clearly, using this notion of distance, one can see how ν2(w) is more sensitive

to changes between nodes “farther” away. However, what is interesting here is

the appearance of the term cos(φ∗j − φ
∗
i ). When the phase difference between cer-

tain buses is larger than π
2 we have cos(φ∗j − φ

∗
i ) < 0 and therefore and increment

on bi j could possibly affect negatively the weight wi j (φ). This phenomenon is

numerically illustrated in section 4.5.1.

4.4 Dynamics-aware Optimal Power Flow

In this section we show that the use of pseudospectral abscissa αε (A) provides

a convenient framework that not only balances transient amplitude and asymp-

totic convergence rate, but also jointly guarantees voltage and small signal sta-

bility. This subsequently leads to a new optimization formulation that can

jointly enforce both stability constraints with a single performance metric.

Given ε ≥ 0 the pseudospectrum Λε of a matrix A is defined as the set of

eigenvalues of all matrices X ∈ Cn×n satisfying | |X − A| |2 ≤ ε where | | · | |2 is the

spectral norm. With this notation, the pseudospectral abscissa is defined by

αε (A) = max{<[z] : z ∈ Λε (A)}.

When ε = 0, α0(A) reduces to the spectral abscissa which is equivalent to

the constraint in [112]. There are several advantages on using pseudospectral

abscissa instead, which we now summarize.
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• Unlike α0(A), αε (A) is locally Lipschitz with respect to A and thus easier

to numerically compute.

• If β(A) is the distance to instability, then the following relationship fol-

lows:

αε (A) ≤ 0 ⇐⇒ β(A) ≥ ε ⇐⇒ H∞(A) ≤
1

ε

Here, H∞(A) is the H∞ norm of the system [168], i.e. H∞(A) =

supω∈R σmax(H ( jω)), where σmax(H (s)) is the maximum singular value

of the transfer function H (s) = (A − sI)−1.

• αε (A) captures several dynamic properties for different values of ε. For

ε = 0, αε (A) is the asymptotic rate. If αε (A) = 0 then ε−1 = H∞(A) and

when ε → +∞, (αε (A) − ε) is the initial rate of decay [169].

With these nice properties, we now propose the following optimization

problems to study the performance limits of a power network.

H∞ : minimize
ε≥0,x,z,u

h(ε)

subject to (4.4) (4.22a)

αε (A(x, z,u,v)) ≤ 0 (4.22b)

Remark 4.1 guarantees that by satisfying (4.4a) we can find (x, z,u,v) that sat-

isfies the equilibrium equations of (4.6a)-(4.6b) and therefore we do not need

(4.6a)-(4.6b) as constraints.

The function h(ε) is decreasing, which guarantees that the optimal solu-

tion (ε∗, x∗, z∗,u∗) of H∞ has the constraint (4.22b) met with equality and makes

1
ε∗ = H∞(A(x∗, z∗,u∗,v)). Thus, this problem finds the optimal configuration in

terms ofH∞(A(x, z,u,v)). Furthermore, the solution of H∞ also guarantees volt-

age stability, since (4.6a)-(4.6b) has a stable equilibrium, and ensures a robust
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stability radius of ε∗. Here we will use h(ε) = −20 log10(ε), which amounts to

the maximum power gain in decibels (dB) of the transfer function H (s) when

αε (A(x, z,u,v)) = 0.

Alternatively, one could choose to sacrifice H∞ optimality by minimizing

αε (·) for fixed ε. That is,

Aε : minimize
x,z,u

αε (A(x, z,u,v)) (4.23)

subject to (4.4)

When ε = 0, Aε finds the optimal configuration u∗ that has the fastest asymptotic

rate. On the other hand, when ε → +∞ the solution of the problem provides a

u∗ that optimizes the initial decay rate of a small perturbation [169].

This new formulation also unveils a fundamental tradeoff between voltage

stability and small signal stability of power networks that has not been pre-

viously analyzed. Finding the maximum distance to voltage collapse implies

using α0(A) in Aε. While the solution of this problem will be optimal in terms

of voltage stability margin, it can potentially have transients with large ampli-

tude. On the other hand, if one is interested in minimizing theH∞(A) using H∞,

then the required voltage stability margins might not be met.

The optimization problems H∞ and Aε conform a novel framework that can

be readily combined with the OPF. They provide a unifying representation of

several dynamical properties within a one parameter family of functions αε (·).

This is very convenient as the operator can choose different values of ε, depend-

ing on the different needs of the power network in consideration.

This results in the following formulation for a Dynamics-aware Optimal

127



Power Flow problem.

Dyn-OPF : minimize
ε≥0,x,z,u

c(V,PG,QG) (4.24)

subject to (4.4)

h(ε) ≤ h∗ (4.25)

αε (A) = 0 (4.26)

αε̂ (A) ≤ a∗ (4.27)

where ε̂ is a constant parameter.

The solution to Dyn-OPF will provide an operating point that minimizes the

generation cost and keeps a maximum power gain of 20 log10(H∞(A)) ≤ h∗. On

the other hand, it is possible to use (4.27) to provide additional constraints on

the system. For example, by setting ε̂ = 0, (4.27) can be used to impose specific

voltage stability margins. Notice that since neither the OPF nor H∞ and Aε

are convex problems, all their solutions and the solution to Dyn-OPF are local

minima.

4.5 Numerical Examples

This section provides numerical examples that illustrate the findings of this

chapter.

4.5.1 Improving the Damping

We start by showing the effect of using the updating directions described in

section 4.3 on two simple network configurations.
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Generator Power Scheduling

Consider a network of 3 generator buses, and 3 load buses disposed in a com-

plete graph configuration as in Figure 4.2 with bii = 10 for every generator,

b12 = b13 = 2 and b23 = 10 . The initial power scheduling is

Pd = [ 4 6 8 ]T , and Pg = [ 7.994 3.006 7 ]T .

Assume also that the power demanded in each bus is fixed and cannot be mod-

ified by the algorithm.

Figure 4.2: 3 Bus Power Network

We now see how the operating point of the network can be locally improved.

One possible equilibrium φ∗ that solves (4.16), for given P, is

φ∗ = [ .513 0 .032 .808 .097 .279 ]Tπ.

The values of P chosen are such that the system is very close to the bifurca-

tion. Figure 4.3 shows the evolution of <[λ2], the corresponding upper bound

provided in Theorem 4.1 and the location of the 4th closest eigenvalues to the

imaginary axis. We can see that when the system is close to a bifurcation, not

only our proposed adaptation is more effective, but also the upper bound com-

puted is tighter.

Initially <[λ2] = λ2 is very close to zero, but it gradually decreases until

a new eigenvalue with non zero imaginary part becomes dominant. This is
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Figure 4.3: Evolution of<[λ2]

captured in the right graph of Figure 4.3. After this point, <[λ2] = − d(xi )
2m(xi )

and

the dependence on the algebraic connectivity is lost.

Adding or Removing a Line

In this example each generator bus gi is generating Pgi = P̄ and each load bus

demands a power of Pdi = P̄ with P̄ = 5. We assume bi j = 10 ∀i j.

Figure 4.4: 6 Bus Power Network

Among the possible equilibria for this network we study the equilibrium φ∗2

given by (φ∗2)di =
2π
6 (i − 1), i ∈ {1, . . . ,6} and (φ∗2)gi = (φ∗2)di + arcsin( 1

2 ).
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In this case, when we add a line between d1 and d4, i.e. we increase σbd1d4

(in red) from σ = 0 to σ = 1, dw
db becomes

dw
dbd1d4

= −ed1d4 < 0,

since φ∗d4 − φ
∗
d1
= π, and therefore 〈∇ν2, δw〉 ≤ 0. In fact, since x∗(w(φ∗2))d1 ,

x∗(w(φ∗2))d4, we can see in Figure 4.5 that ν2(w(φ∗2)) decreases.
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Figure 4.5: Effect of Adding bd1d4

Here we can also see that although <[λ2] and ν2(L(w(φ∗))) might not be in

general correlated, when the system is close to a bifurcation, i.e. ν2(L(w(φ∗)))

and <[λ2] are close to zero, the changes on ν2(L(w(φ∗))) directly affect <[λ2].

Moreover, Figure 4.5 shows how our upper-bound is only valid in this specific

case.

4.5.2 Test Cases Dynamics-aware OPF

Finally, we provide two examples to illustrate the properties of the optimization

framework presented in section 4.4. The dynamic models of (4.6a) and (4.9) as
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well as the algebraic equations (4.4a) and (4.6b) are computed using the Power

System Toolbox (PST) [170]. αε (A) is evaluated using the Matlab code provided

with [171] with a tolerance of 1e − 12. The gradients of αε (A) are computed

numerically and the Matlab Optimization Toolbox is used to compute the local

optimum. We call the fmincon subroutine with function and constraint toler-

ance of 1e − 6 for optimizations involving αε (A) (H∞ , Dyn-OPF , Aε ) and with

tolerance 1e − 7 for OPF . All the results presented in this section are in base

100MVA.

The cost function c(V,PG,QG) used is the standard quadratic cost function

depending only on the active generation, i.e.

c(PG) =
∑
i∈N

c2i P2
Gi

+ c1i PGi + c0i .

This framework is not limited to this specific c(V,PG,QG) and can be easily ex-

tended to consider other objective functions.

Two Area Test Case

This example illustrates properties and differences between the local minima

of the optimization problems H∞, Aε and OPF. We consider a 2 area power

network with 13 buses and 4 generators with detailed 2-axis subtransient gen-

erators, static exciters, power system stabilizers and 2 induction motors on the

load buses 4 and 14.

The load profile as well as the parameters of the induction motors were take

from the file d2asbegp.m that comes with the PST distribution. The generator

dynamics parameters are chosen homogeneously and listed in Table 4.1.
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Figure 4.6: Two area 13-bus test case

Table 4.1: Generator dynamics parameters for the two are test case

Gen # xl (pu) ra (pu) xd (pu) x′
d

(pu)

1,2,3,4 0.022 0 0.2 0.033

x′′
d

(pu) T′
do

(sec) T′′
do

(sec) xq (pu) x′q (pu)

0.028 8 0.03 0.189 0.061

x′′q (pu) T′qo (sec) T′′qo (sec) H (sec) do = d1 (pu)

0.027 0.4 0.05 58.5 0

Figure 4.7: AC4a Excitation System
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Generators are provided with identical AC4a excitation systems and PSSs.

Figure 4.7 shows a block diagram of the AC4a system, where Tr is the transducer

time constant, Ka and Ta are the voltage regulator gain and time constants, re-

spectively, [Vimin ,Vimax ] are the input voltage saturation limits, [Vrmin ,Vrmax ] are the

output voltage saturation limits (we take Kc = 0 in Figure 4.7) and Tb and Tc are

compensator constants.

Table 4.2: AC4a excitation system parameters

Gen # Tr (sec) Ka Ta (sec) Tb (sec)

1,2,3,4 .0145 200 .05 0

Tc (sec) Vimin
(pu) Vimax (pu) Vrmin (pu) Vrmax (pu)

0 -10 10 -4.53 5.64

We use standard PSSs with washout filter and two lag compensators with

Laplace Transfer

HPSS
i (s) = κi

sTw,i

1 + sTw,i

1 + sTn1,i

1 + sTd1,i

1 + sTn2,i

1 + sTd2,i

with equal parameters κ = 1, Tw = 10, Tn1 = .05, Td1 = .02, Tn2 = .08 and

Td2 = .015. All time constants are in seconds.

We solve OPF, H∞ and Aε with ε = 0. We assume equal cost among the four

generators with parameters c0 = 0 and c1 = c2 = 1. The optimal power schedul-

ing is illustrated in Table 4.3. Table 4.4 shows the asymptotic rate of convergence

α0(A), minimum damping ratio ξ and maximum gain of the system H∞(A) for

the three optimization problems studied in this test case, and Figure 4.8 shows

the corresponding critical eigenvalues.

This example clearly illustrates the tradeoff between asymptotic rate of con-
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Table 4.3: Power Scheduling of two area 13-bus test case for H∞ , OPF and
Aε with ε = 0

Gen #
H∞ OPF Aε

PG QG PG QG PG QG

1 6.64 1.04 4.90 0.86 5.86 2.33

2 7.81 2.12 5.01 0.02 5.69 1.65

3 3.59 -1.66 4.89 0.87 5.32 0.72

4 2.00 1.23 5.01 -1.13 3.11 1.51

Table 4.4: Dynamic performance metrics of different operating solutions

H∞ OPF Aε=0

α0(A) -0.100238 -0.100331 -0.100598

ξ (A) 0.1076 0.0571 0.0108

H∞(A) (dB) 38.23 40.60 55.75

vergence and oscillations amplitude. In particular, we can see how Aε=0 suc-

ceeds in obtaining a smaller α0(A) than H∞ and OPF , but it performs very

poorly in terms of minimum damping ratio ξ and maximum frequency gain

H∞(A). This confirms our claim suggesting that α0(A) should not be used as a

performance metric in order to avoid oscillations like in [112] as it can poten-

tially amplify them. This is somehow counterintuitive since α0(A) does succeed

in avoiding Hopf Bifurcations.

On the other hand H∞ clearly outperforms OPF in damping the modes

achieving a relative increment in the minimum damping of ξH∞

ξOPF
= 2.83, almost

three times higher, and a gain reduction HH∞
(A)

HOPF (A) = −2.37 dB. Thus, this example

also shows how the dynamic behavior of a power network can be considerably
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improved by solely changing the operating point.
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Figure 4.9: Modes vs frequency of the two are test system solutions to Aε ,
OPF and H∞ .

Finally, we present in Figure 4.9 a stem graph of the system modes (damping

vs frequency) for the different operating points computed. It is interesting to
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notice that some modes do not change considerably by modifying the power

scheduling. This evidences the limits of the framework. That is, if the mode that

defines the minimum damping is not very sensitive to the power scheduling,

then the improvement may not be considerable.

Therefore, while this method is effective to alleviate possibly stressed sce-

narios cause by a poor scheduling, it is certainly not a substitute to current in-

dustry practices of controller designs which are clearly needed to modify the

modes that are not sensitive to the scheduling.

New England Power Grid

We now consider the IEEE 39-bus New England power grid with 10 detailed

2-axis generator models shown in Figure 4.10. Generators 1 to 9 are equipped

with AC4a excitation system with parameters described also by Table 4.2 and

PSSs using the optimal configuration described in [71]. The dynamic data of the

generators was obtained from [172]. We select generator 10 as infinite bus in

order to eliminate the zero eigenvalue of the system.

In order to illustrate a stressed state of the network, we define two different

generation cost values. Generators 1, 8-10 use parameters c2 = 0.01, c1 = 3.0 and

c0 = 0.0, and generators 2-7 use c2 = 0.01, c1 = 0.3 and c0 = 0.0. This creates a

power transfer from area 2 to area 1 of Figure 4.10 through lines (15.17), (3,4)

and (9,39) and thus brings the system closer to its stability boundary.

We first solve the OPF and H∞ problems with voltage constraints limits of

[0.9,1.1] (pu) for every load bus and [0.95,1.05] (pu) for every generator bus.

Generation limits are set homogeneously to Pmax
Gi

= 11, Pmin
Gi
= 0, Qmax

Gi
= 8
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Figure 4.10: One line diagram of New England 39-bus system

and Qmin
Gi
= −5. All flow and thermal constraints are made non-binding. The

solution of H∞ gives a value of h(ε∗) = 32.392 dB while for the optimum of OPF

h(ε∗) = 32.808 dB. The relative damping ratio gain is ξH∞

ξOPF
= 2.71 which indicates

a significant increment on the system damping.

However, this damping improvement implies an increase of the generation

cost from c(P∗G) = 59.4 in OPF to c(P∗G) = 112.5 which amounts to a 112.0%

increment. This is quite inefficient and we would like to balance the tradeoff

between economic efficiency and dynamics performance. We therefore run our

Dyn-OPF using h∗ = 32.398 ∈ [32.392,32.808] dB and a∗ = 0.

Figure 4.11 shows the modes stem graphs for the three different optimization

138



Table 4.5: Power Scheduling of OPF , H∞ and Dyn-OPF with h∗ = 32.398
and a∗ = 0

Gen #
OPF H∞ Dyn-OPF

PG QG PG QG PG QG

1 0.00 1.64 1.97 2.19 10.75 1.84

2 7.75 4.77 10.93 5.01 10.98 4.93

3 7.53 6.78 4.64 5.75 5.47 5.72

4 9.55 5.26 2.40 3.37 2.00 3.38

5 9.09 3.48 10.98 3.16 10.99 3.12

6 10.53 5.33 0.18 2.32 1.34 2.64

7 7.73 2.42 0.71 0.45 8.92 1.63

8 0.00 1.82 11.00 1.56 0.94 1.82

9 0.66 1.09 8.61 0.75 0.01 0.76

10 9.95 2.89 11.00 2.72 11.00 2.29

problems solved as well as the generation cost incurred by each. We can see that

by allowing a generation cost of c(P∗G) = 86.0, i.e. a 61.9% increment, we are able

to obtain a damping ratio gain of ξDyn-OPF
ξOPF

= 2.02. The corresponding eigenvalues

are shown in Figure 4.12. Although this cost increment might be unfeasible for

regular operation, it can certainly be afforded in order to momentarily avoid an

unexpected stressed condition.

The frequency that maximizesH∞(A) is ω = 0. A detailed analysis of the left

and right singular vectors of the singular value σmin(A) = σmax( j0I − A)−1 =

H∞(A) for the solutions of H∞ and OPF shows that the high gain of the system

transfer function H (s) = (sI − A)−1 is achieved between PSS state variables of

several groups of generators. This suggests that the system configuration is in a
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Figure 4.11: Damping ratios and generation cost of New England power
grid
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point that is mostly sensitive to changes on the PSSs parameters. It also explains

the differences between the power schedulings on Table 4.5 and the little gain

reduction of −0.41 dB from OPF to H∞ , i.e. one needs considerable changes on

the scheduling in order to slightly improveH∞(A).

Furthermore, since the operating point has changed with respect to the one

used in [71] to compute the optimal PSS parameters, a different configuration

could further reduce the damping of the system. This can be easily included in

our framework and is subject of current research.

141



CHAPTER 5

FUTURE WORK

This thesis covers several aspects of collective synchronization on networks

that spans from theoretical guarantees and performance analysis to protocol

implementation and parameters optimization. Besides the specific extensions

that each of the individual lines of work of this thesis might have, there are

some general directions that are of general interest.

One example concerns the interplay between network topology and system

performance. In chapters 3 and 4 we have seen that the topology of the net-

work as well as its parameters have a direct effect on the performance of the

system. We saw in both cases that by changing the value of the graph weights

as well as its topology we can obtain significant changes on its performance. In

particular, the effect of noise in the system is affected by the topology. In other

words, the agents can use the network to collectively reduce the noise in the

system and significantly outperform individuals. Understanding this relation-

ship is of great practical interest and can be used to improve the performance of

distributed systems. Some related work is present in [173, 174].

Another interesting direction worth pursuing is related to the notion of con-

vergent measure discussed in remark 3.2. The notion of invariant measure, that

appeared in section 2.4.1 to compute the final frequency the system converges,

is widely used in consensus systems [175–177] to compute the consensus val-

ues, see e.g. [178]. The results presented on chapter 3 suggest that it is possible

to design a system that posses time varying measures whose behavior can be

controlled. Thus, by using local interactions within a network it is possible to

control and probably optimize global measures of the whole system.
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We also present several directions that we consider worth pursuing on each

of the chapters of this thesis.

5.1 Coupled Oscillators

For example, in homogeneous coupled oscillators, we are interested in further

understanding how the value of b needed for in-phase synchronization depends

on the topology. Besides completing the proof in section 2.2.3 for the cases when

m = 1,3,5, it would be interesting to see whether b can be bounded by a measure

of the connectivity of the graph. Our intuition tells us that such result should be

provable, yet we have not be able to obtain it.

Additionally, we are interested in eliminating the isolated orbit assumption

of section 2.4.2 and see whether the convergence analysis can be also extended

to the alternative solution discussed in remark 2.6. The main advantage of this

alternative solution is that it only uses phase difference information. Although

this was a disadvantage in chapter 3 as it produced backward jumps, it makes

it quite suitable to implement using pulse-coupling. Therefore, it can be used

to improve the performance of recent protocols that are based on models of

homogeneous frequency pulse-copuled oscillators which are unavoidably im-

plemented using heterogeneous frequencies, see e.g. [179].

5.2 Skewless Network Clock Synchronization

Besides showing that skew information is not needed to synchronize the clocks

of networked nodes, perhaps the most striking result of chapter 3 is the fact
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that in the presence of noise one cannot escape from having a leader or orches-

trator when one seeks to achieve consensus in time and frequency at the same

time. This is not a problem in our application itself as we usually have a specific

source of time (UTC) that we seek to follow.

However, it does seem to become restrictive in more distributed applica-

tions such as sensor networks, where one only needs a common relative notion

of time. The main difficulty is that the same property that is used to guarantee

consensus, i.e. the zero eigenvalue on the Laplacian matrix, is the one that al-

lows the noise to accumulate and drift the system away. It would be interesting

to design a control law that is robust to this issue.

Additionally, we are interested in investigating the possibility of decentral-

izing the parameter optimization. So far, we have been able to use numerical

methods to find locally optimal parameters. These methods are centralized and

therefore unfitted for distributed applications.

5.3 Dynamics-aware OPF

Besides the insightful results presented on sections 4.2 and 4.3, we consider that

the most promising direction to pursue is the one related with our dynamics-

aware optimization framework. Although in section 4.4 we have shown that is

possible to integrate several dynamic performance metrics to the OPF problem,

there is still a gap that prevents its application in real systems. Our current

formulation solves the problem using gradient-based methods that can perform

very poorly. As future work we are interested in investigating the development

of more efficient numerical methods that are able to handle several thousands
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of variables.

We are also interested in expanding our framework to include additional

performance metrics such as H2 norm and to include controller synthesis. Op-

timal controllers are usually designed based on a fixed base operating point.

However, as the state of the grid changes the designed controllers are no longer

optimum. In order to cope with the future challenges of the incursion of re-

newable generation, the future grid must be able to adapt and reconfigure the

controlling scheme online.
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APPENDIX A

APPENDIX

A.1 Proof of Theorem 2.3

Proof. As in Theorem 2.2 we will use our cut condition to show the instability

of φ∗. Thus, we define a partition P = (S,V (G)\S) of V (G) by taking S to be a

maximal subset of V (G) such that d(φ,S) < 4π
m , see Figure 2.9 for an illustration

of P. Notice that any of these partitions will include all the oscillators of two

consecutive blocks of every constellation.

Instead of evaluating the total sum of the weights in the cut we will show

that the sum of edge weights of the links connecting the nodes of one constella-

tion in S with the nodes of a possibly different constellation in V (G)\S is nega-

tive. In other words, we will focus on showing

∑
i j∈Kl1l2

f ′(φ∗j − φ
∗
i ) < 0 (A.1)

where Kl1l2 = {i j : i ∈ Cl1 ∩ S, j ∈ Cl2 ∩ V (G)\S}.

Given any subset of integers J, we define

gJ
m(δ) = gm(δ) −

∑
j∈J

f (
2π

m
j + δ).
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Then, we can rewrite (A.1) as

∑
i j∈Kl1l2

f ′(φ∗j − φ
∗
i ) =

=(g{0,1}m )′(δl1l2 ) + (g{−1,0}
m )′(δl1l2 )

=2g′m(δl1l2 ) − f ′(δl1l2 +
2π

m
) − 2 f ′(δl1l2 )

− f ′(δl1l2 −
2π

m
) (A.2)

where δl1l2 ∈ [0, 2π
m ] is the phase shift between the two constellations. Then, if

we can show that for all δ ∈ [0, 2π
m ] (A.2) is less than zero then for any values of

l1 and l2 we will have (A.1) satisfied.

Since f is odd and even around π
2 , f ′ is even and odd around π

2 and g′m(δ)

can be rewritten as

g′m(δ) = f ′(δ)

+
∑

1≤| j |≤b k2 c

{
f ′(δ +

2π

m
j) − f ′(δ − sgn( j)

π

m
+

2π

m
j)
}

−

[
f ′(δ +

π

m
k) + f ′(δ −

π

m
k)

]
1[k odd]

where 1[k odd] is the indicator function of the event [k odd], the sum is over all

the integers j with 1 ≤ | j | ≤ b k
2c and k = m−1

2

The last term only appears when k is odd and in fact it is easy to show that
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it is always negative as the following calculation shows:

− f ′(δ +
π

m
k) − f ′(δ −

π

m
k) =

= − f ′(
π

m
k + δ) − f ′(

π

m
k − δ)

= − f ′(
π

2
−

π

2m
+ δ) − f ′(

π

2
−

π

2m
− δ)

= f ′(
π

2
− δ +

π

2m
) − f ′(

π

2
− δ −

π

2m
)

= f ′(θ) − f ′(θ − φ) < 0

where in step one we used the fact of f ′ being even, in step two we used k = m−1
2

and in step three we use f ′ being odd around π
2 . The last step comes from

substituting θ = π
2 − δ + π

2m , φ = π
m and apply Lemma 2.3, since for m ≥ 7 we

have 0 ≤ θ − φ < θ ≤ π.

Then it remains the show that the terms of the form f ′(δ + 2π
m j) − f ′(δ −

sgn( j) πm + 2π
m j) are negative for all j s.t. 1 ≤ | j | ≤ b k

2c. This is indeed true when

j is positive since for all δ ∈ [0, 2π
m ] we get

0 ≤ δ −
π

m
+

2π

m
j < δ +

2π

m
j ≤ π, for 1 ≤ j ≤ b

k
2
c

and thus we can apply again Lemma 2.3.

When j is negative there is one exception in which Lemma 2.3 cannot be

used since

−π ≤ δ +
2π

m
j < δ +

2π

m
j +

π

m
≤ 0,∀δ ∈ [0,

2π

m
]

only holds for −b k
2c ≤ j ≤ −2. Thus the term corresponding to j = −1 cannot be

directly eliminated.

Then, by keeping only the terms of the sum with j = ±1, g′m is strictly upper
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bounded for all δ ∈ [0, 2π
m ] by

g′m(δ) < f ′(δ) + f ′(δ −
2π

m
) − f ′(δ −

π

m
)

+ f ′(δ +
2π

m
) − f ′(δ +

π

m
) (A.3)

Now substituting (A.3) in (A.2) we get∑
i j∈Kl1l2

f ′(φ∗j − φ
∗
i )

< f ′(δ −
2π

m
) − 2 f ′(δ −

π

m
) + f ′(δ +

2π

m
) − 2 f ′(δ +

π

m
)

≤ f ′(δ −
2π

m
) − 2 f ′(δ −

π

m
) − f ′(δ +

π

m
)

≤ f ′(δ −
2π

m
) − 2 f ′(δ −

π

m
)

where in the last step we used the fact that for m ≥ 6 and δ ∈ [0, 2π
m ], f ′(δ+ π

m ) ≥ 0.

Finally, since for δ ∈ [0, 2π
m ] f ′(δ − 2π

m ) is strictly increasing and f ′(δ − π
m )

achieves its minimum for δ ∈ {0, 2π
m }, then

f ′(δ −
2π

m
) − 2 f ′(δ −

π

m
) ≤ f ′(0) − 2 f ′(

π

m
) ≤ 0

where the last inequality follow from Lemma 2.4.

Therefore, for all m odd greater or equal to 7 we obtain∑
i j∈Kl1l2

f ′(φ∗j − φ
∗
i ) < f ′(0) − 2 f ′(

π

m
) ≤ 0

and since this result is independent on the indices l1, l2, then∑
i j∈C(S,V (G)\S)

f ′(φ∗j − φ
∗
i )

=

lB∑
l1=1

lB∑
l2=1

∑
i j∈Kl1l2

f ′(φ∗j − φ
∗
i ) < 0

and thus φ∗ is unstable.
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A.2 Proof of Lemma 3.1

Proof. We first compute the characteristic polynomial

det(λI3n − A) =

������������

(λ − 1)In −τR 0

κ1L (λ − 1)In κ2In

pL 0 (λ − 1 + p)In

������������

= (λ − 1)n

��������

(λ − 1)In + τκ1
λ−1 LR κ2In

τp
λ−1 LR (λ − 1 + p)In

��������
= det

(
(λ − 1)2(λ − 1 + p)In + [(λ − 1)κ1

+(κ2 − κ1)]τLR
)
=

n∏
l=1

gl (λ),

where gl (λ) is as defined in (3.20) and we have iteratively use the determinant

property of block matrices det(A) = det(A11) det(A\A11) where A =


A11 A12

A21 A22


and A\A11 = A22 − A21 A−1

11 A12 is the Schur complement of A11 [150].

Thus, λ = 1 is a double root of the characteristic polynomial if and only if

κ1 , κ2, p > 0 and τcLR has a simple zero eigenvalue, i.e. (3.21). Now, since R

is nonsingular (3.21) must hold for the eigenvalues of L as well, which is in fact

true if and only if the directed graph G(V,E) is connected [148].

A.3 Proof of Lemma 3.2

Proof. We start by computing the right Jordan chain. By definition of ζ1, (A −

I)ζ1 = 0n. Thus, if ζ1 = [xT sT yT ]T , then the following system of equations must
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be satisfied

τRs = 0 (a), − κ1Lx − κ2y = 0 (b), − pLx − py = 0 (c). (A.4)

Equation (A.4a) implies s = 0. Now, since p > 0, (A.4c) implies Lx = −y, which

when substituted in (A.4b) gives (κ2−κ1)y = 0. Thus, since κ1 , κ2, y = 0 and x ∈

ker(L). By choosing x = α11n (for some α1 , 0) we obtain ζ1 = α1

[
1T

n 0T
n 0T

n

]T
.

Notice that the computation also shows that ζ1 is the unique eigenvector of

µ(A) = 1 which implies that there is only one Jordan block of size 2. The second

member of the chain, ζ2, can be computed similarly by solving (A − In)ζ2 = ζ1

and (A − (1 − p)In)ζ3 = 0 we get

ζ2 =



α21n

α1
τ R−11n

0n



and ζ3 = α3



−
τκ2
p2 1n

κ2
p R−11n

R−11n



.

To compute ζ3, first notice that (A − (1 − p)In)ζ3 = 0 implies Lx = and x = − τp s =

−
κ2τ
p2 y. ζ3 follows by taking y = α3R−11n.

The vectors η1, η2 and η3 can be solved in the same way using ηT
2 (A −

I) = 0, ηT
1 (A − I) = ηT

2 and ηT
3 (A − (1 − p)I) = 0. This gives

η1 =

[
β2
τ R−1ξT β1ξ

T (− κ2p β1 + κ2
p2 β2)ξT

]T
, η2 = β2

[
0T

n ξ
T κ2

p ξ
T
]T

and η3 =

β3

[
0T

n 0T
n ξ

T
]T
. We set α1 = α2 = α3 = 1; this can be done WLOG provided we

still satisfy ηT
l ζl = 1 and ηT

l ζh = 0 for l , h. Finally, ηT
1 ζ1 = 1 givesβ2 = γτ,

ηT
3 ζ3 = 1 gives β3 = γ and ηT

1 ζ2 = 0 gives β1 = −β2 = −γτ.
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A.4 Proof of Theorem 3.1

Proof. We first notice that whenever x(tk ) approaches (3.17) then

lim
h→∞

x(th) − r∗1nth = x∗1n (A.5)

Sufficiency

Since we are under the assumptions of Lemmas 3.1 and 3.2 we know that µ(A) =

1 has multiplicity 2 and a Jordan chain of size 2. Thus, the Jordan normal form

of A is

A = [ζ1...ζ3n]



1 1 0

0 1 0

0 0 1 − p

03×3(n−1)

03(n−1)×3 Ĵ





η1
T

...

η3n
T



(A.6)

where Ĵ has eigenvalues with spectral radius ρ( Ĵ) := maxl |µl ( Ĵ) | < 1. Thus, it

follows that

lim
h→∞

Ah − ζ1η
T
1 − (hζ1 + ζ2)ηT

2 = lim
h→∞

[ζ1...ζ3n] (A.7)



02×2 02×1

01×2 (1 − p)h
02× (3n−2)

0(3n−2)×2 Ĵh





η1
T

...

η3n
T



= 03n

where the last equality follows since (1 − p)h −−−−→
h→∞

0 and 


 Ĵh


ε ≤ 


 Ĵ



h

ε
≤ (ρ +

ε)h −−−−→
h→∞

0, where the norm ‖·‖ε is chosen such that ‖A‖ε = ρ(A) + ε [150, p.

297, Lemma 5.6.10] and ε is such ρ( Ĵ) + ε < 1.

Right multiplying (A.7) with a given initial condition z0 = [xT
0 sT

0 yT
0 ]T and
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using (3.22) and (3.23) gives

lim
k→∞

xk − tkγ1nξ
T (s0 −

κ2

p
y0) = γ1nξ

T (R−1x0 + τ
κ2

p2
y0). (A.8)

Thus, equation (3.24) follows from identifying (A.8) and (A.5).

Necessity

The algorithm achieves synchronization whenever (A.5) holds. Then, it follows

from (3.18) and (A.5) that asymptotically the system behaves according to

zk =



xk

sk

yk



=



x∗1n

r∗R−11n

0n



+ k



τr∗1n

0n

0n


=

(
τr∗ζ2 + (x∗ − τr∗)ζ1

)
+ kr∗τζ2.

Thus, since P is invertible ζl are linearly independent. Therefore, if the system

synchronizes for arbitrary initial condition, then it must be the case that the

effect of the remaining modes µl (Γ) vanishes, which can only happen if for every

µl (Γ) , 1, |µl (Γ) | < 1 and the multiplicity of µl (Γ) = 1 is two. Now suppose that

either κ1 = κ2 or p = 0. Then by Lemma 3.1, the multiplicity of µl (Γ) = 1 is not

two which is a contradiction. Thus, we must have κ1 , κ2 and p > 0 whenever

the system synchronizes for arbitrary initial condition.

A.5 Proof of Theorem 3.3

Proof. We will show that when G(V,E) is connected with µ(L) ∈ R, then (i)-(iii)

are equivalent to the conditions of Theorem 3.1.
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Since, G(V,E) is connected and (i)-(ii) satisfies p > 0 and κ1 , κ2, the condi-

tions of Lemma 3.1 are satisfied. Therefore the multiplicity of µ(A) = 1 is two

and by (3.21) these are the roots of gn(λ) = (λ−1)2(λ−1+ p),which corresponds

to the case νn = 0.

Thus, to satisfy Theorem 3.1 we need to show that the remaining eigenvalues

are strictly in the unit circle. This is true for the remaining root of gn(λ) iff (i).

For the remaining gl (λ), this implies that are Schur polynomials. Thus, we

will show that gl (λ) is a Schur polynomial if and only if (i)-(iii) hold. We drop

the subindex l for the rest of the proof.

We first transform the Schur stability problem into a Hurwitz stability prob-

lem. Consider the change of variable λ = s+1
s−1 . Then |λ | < 1 if and only if

R[s] < 0.

Now, since ν > 0 by (3.21), let

P(s) =
(s − 1)3

δκpν
g

( s + 1

s − 1

)
= s3 +

(
2κ1

δκp
− 3

)
s2

+

(
4

δκν
+ 3 −

4κ1

δκp

)
s +

4(2 − p)
δκpν

+
2κ1

δκp
− 1

where δκ = κ1 − κ2.

We will apply Hermite-Beihler Theorem to P(s), but first let us express what

1) and 2) of Theorem 3.2 mean here.

Condition 1) becomes

2κ1

δκp
− 3 > 0. (A.9)

154



Now let Pr (ω) and Pi (ω) be as in Theorem 3.2, i.e. let

Pr (ω) = −
(

2κ1

δκp
− 3

)
ω2 +

4(2 − p)
δκpν

+
2κ1

δκp
− 1

Pi (ω) = − ω3 +

(
4

δκν
+ 3 −

4κ1

δκp

)
ω

The roots of Pr (ω) and Pi (ω) are given by ω0 = ±
√
ωr

0 and ω0 ∈ {0, ±
√
ωi

0}

respectively, where

ωr
0 :=

4(2−p)
δκpν + 2κ1

δκp − 1

2κ1
δκp − 3

and ωi
0 :=

4

δκν
+ 3 −

4κ1

δκp
(A.10)

Since the roots Pr (ω) and Pi (ω) must be real, we must have ωr
0 > 0 and

ωi
0 > 0. Therefore, by monotonicity of the square root, the interlacing condition

2) is equivalent to

0 < ωr
0 < ω

i
0. (A.11)

Thus we will show: (i)-(iii) hold ⇐⇒ (A.9) and (A.11) hold.

It is straightforward to see that using (i) and (ii) we can get (A.9). On the

other hand, ωi
o > 0 from (A.11) together with (A.9) gives 0 < 4

δκν + 3 − 4κ1
δκp <

4
δκν ,

which implies that δκ > 0, and therefore (ii) follows.

Now using (A.9) and the definition of ωr
0 in (A.10), ωr

0 > 0 becomes 4(2−p)
δκpν +

2κ1
δκp − 1 > 0 which always holds under (i) and (ii) since the first term is always

positive and 2κ1
δκp − 1 > 2κ1

δκp − 3 > 0 by (A.9).

Using (A.10), ωr
0 < ω

i
0 is equivalent to

4(2−p)
δκpν + 2κ1

δκp − 1

2κ1
δκp − 3

<
4

δκν
+ 3 −

4κ1

δκp

2κ1
δκp − 1

2κ1
δκp − 3

+
4κ1

δκp
− 3 <

4

δκν


1 −

(2−p)
p

2κ1
δκp − 3



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where the left-hand side (LHS) is

LHS =
(2κ1 − δκp)δ)δκp + (4κ1 − 3δκp)(2κ1 − 3δκp)

(2κ1 − 3δκp)δκp

=
8(κ2

1 − 2κ1δκp + (δκp)2)
(2κ1 − 3δκp)δκp

=
8(κ1 − δκp)2

(2κ1 − 3δκp)δκp

and the right hand side (RHS) is

RHS =
4

δκν

2κ1−3δκp+(2−p)δκ
δκp

2κ1−3δκp
δκp

=
8

δκν

κ2 − δκp
2κ1 − 3δκp

.

Thus LHS < RHS becomes

8(κ1 − δκp)2

(2κ1 − 3δκp)δκp
<

8

δκν

κ2 − δκp
2κ1 − 3δκp

(κ1 − δκp)2

p
<

1

ν
(κ2 − δκp)

ν <
p(κ2 − δκp)
(κ1 − δκp)2

(A.12)

Finally, νl = µl (τLR) = τµl (LR). Thus, since (A.12) should hold ∀l ∈ {1, ...,n−

1}, then

τ < min
l

p(κ2 − δκp)
µl (LR)(κ1 − δκp)2

=
p(κ2 − δκp)

µmax(κ1 − δκp)2

which is exactly (iii).

A.6 Graph Laplacian with Real Eigenvalues

We know show that every graph G with a leader i0 such that the graph Gsub

induced by V\{1} is symmetric, always has real eigenvalues. WLOG assume

i0 = 1. Then from the structure of the graph it is easy to see that

L =


0 0T
n−1

l L̃


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where li−1 = −αi1,

L̃ = LGsub + Dn−1

and Dn−1 = diag[αi1]. Thus, since LGsub is a symmetric matrix and Dn−1 diagonal,

it follows that the eigenvalues of L̃ are real. Finally consider a possibly complex

eigenvalue λ and corresponding eigenvector x = [x1 |(x[2,n])T ]T . Then, since Lx =

λx, it follows that

0 = 0T
n x = λx1 and l x1 + L̃x[2,n] = λx[2,n].

Thus, whenever λ , 0, x1 = 0 and thus we obtain L̃x[2,n] = λx[2,n] which implies

that λ is an eigenvalue of L̃. This show our claim since we have already proved

that L̃ as symmetric and therefore can only have real eigenvalues.
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