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Abstract— Frequency control rebalances supply and demand
while maintaining the network state within operational mar-
gins. It is implemented using fast ramping reserves that are
expensive and wasteful, and which are expected to grow with
the increasing penetration of renewables. The most promising
solution to this problem is the use of demand response, i.e. load
participation in frequency control. Yet it is still unclear how
to efficiently integrate load participation without introducing
instabilities and violating operational constraints.

In this paper we present a comprehensive load-side frequency
control mechanism that can maintain the grid within oper-
ational constraints. Our controllers can rebalance supply and
demand after disturbances, restore the frequency to its nominal
value and preserve inter-area power flows. Furthermore, our
controllers are distributed (unlike generation-side), can allocate
load updates optimally, and can maintain line flows within ther-
mal limits. We prove that such a distributed load-side control
is globally asymptotically stable and illustrate its convergence
with simulation.

I. INTRODUCTION

Frequency control maintains the frequency of a power net-
work at its nominal value when demand or supply fluctuates.
It is traditionally implemented on the generation side and
consists of three mechanisms that work in concert [1]-[3].
The primary frequency control, called the droop control and
completely decentralized, operates on a timescale up to low
tens of seconds and uses a governor to adjust, around a set-
point, the mechanical power input to a generator based on the
local frequency deviation. The primary control can rebalance
power and stabilize the frequency but does not restore the
nominal frequency. The secondary frequency control (called
automatic generation control) operates on a timescale up to
a minute or so and adjusts the setpoints of governors in a
control area in a centralized fashion to drive the frequency
back to its nominal value and the inter-area power flows to
their scheduled values. Finally, economic dispatch operates
on a timescale of several minutes or up and schedules the
output levels of generators that are online and the inter-area
power flows. See [4], [5] for a recent hierarchical model of
power systems and their stability analysis.

Load-side participation in frequency control offers many
advantages, including faster response, lower fuel consump-
tion and emission, and better localization of disturbances.
The idea of using frequency adaptive loads dates back to
[6] that advocates their large scale deployment to “assist or
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even replace turbine-governed systems and spinning reserve.”
They also proposed to use spot prices to incentivize the users
to adapt their consumption to the true cost of generation
at the time of consumption. Remarkably it was emphasized
back then that such frequency adaptive loads will “allow the
system to accept more readily a stochastically fluctuating
energy source, such as wind or solar generation” [6].

This is echoed recently in, e.g., [7]-[13] that argue for
“grid-friendly” appliances, such as refrigerators, water or
space heaters, ventilation systems, and air conditioners, as
well as plug-in electric vehicles to help manage energy
imbalance. Simulations in all these studies have consistently
shown significant improvement in performance and reduction
in the need for spinning reserves. A small scale project by the
Pacific Northwest National Lab in 20062007 demonstrated
the use of 200 residential appliances in primary frequency
control that automatically reduce their consumption when
the frequency of the household dropped below a threshold
(59.95Hz) [14].

In spite of these simulation studies and field trials, it
was not until very recently that analytic studies were de-
veloped on the (potential) behavior of the large-scale de-
ployment of distributed frequency control. Some of the main
examples of these studies focus on distributed secondary
frequency control in power systems [5], [15]-[17], and
microgrids [18]-[22]. However, a general solution is yet
to be developed on how to rebalance supply and demand,
restore nominal frequency, preserve inter-area flows and
avoid thermal limit violations.

Another model was recently presented in [23] that for-
mulates an optimal load control (OLC) problem where the
objective is to minimize the aggregate disutility of tracking
an operating point subject to power balance over the net-
work. The main conclusion is that decentralized load-side
primary frequency control, coupled with the power network
dynamics, serves as a primal-dual algorithm to solve (the
Lagrangian dual of) OLC. Like the droop control on the
generation side, the scheme in [23] rebalances power and
resynchronizes frequencies after a disturbance, but does not
drive the system to a desirable operating point. Similar ideas
since then have been developed to include AGC and governor
dynamics [24] and to use load-side secondary frequency
control to restore the frequency to its nominal value [25].

In this paper, we extend this framework to allow the sys-
tem restore the desired operational constraints. We first mod-
ify the OLC problem to include the operational constraints in
Section III. The crux of our contribution is the introduction
of surrogate line flows that in equilibrium are equal to the
real line flows. This allows us to derive a distributed solution



that preserves the primal-dual interpretation of the network
dynamics (Section IV) and guarantees global asymptotic
stability (Section V). We prove that our design is globally
asymptotically stable and converges to an optimal solution
of the modified OLC. Finally, we present simulations to
illustrate these results (Section VI).

II. PRELIMINARIES

Let R be the set of real numbers and IN the set of natural
numbers. Given a finite set S C IN we use |S| to denote its
cardinality. For a set of scalar numbers a; € R, i € S, we
denote ag as the column vector of the a; components, i.e.
as = (a;, € S) € RISI; we usually drop the subscript S
when the set is known from the context. Similarly, for two
vectors a € RIS and b € RIS'l we define the column vector
z = (a,b) € RISITI5l, Given any matrix A, we denote its
transpose as A7 and use A; to denote the ith row of A. We
will also use Ag to denote the sub matrix of A composed
only of the rows A; with ¢ € S. The diagonal matrix of
a sequence {a;, i € S}, is represented by diag(a;)ies.
Similarly, for a sequence of matrices {A,, h € S} we
let blockdiag(Ap)res denote the block diagonal matrix.
Finally, we use 1 (0) to denote the vector/matrix of all ones
(zeros), where its dimension is understood from the context.

A. Network Model

We consider a power network described by a directed
graph G(NV, &) where N = {1,...,|N|} is the set of buses
and £ C N x N is the set of transmission lines denoted by
either e or ij such that if ij € &, then ji ¢ £. We partition
the buses A = GU L and use G and £ to denote the set of
generator and load buses respectively.

The evolution of the transmission network is described by

M, = P" = (di+d;) =Y CicP.  i€G (la)
ecé

0=P"—(di+d)-) Ci.P. i€L (Ib)
ecé

Pij = Bij(wi — wj) ije&  (lo)

Cii = Diwi 1 S N (ld)

where d; denotes an aggregate controllable load, d; denotes
an aggregate uncontrollable but frequency-sensitive load as
well as damping loss at generator ¢, M; is the generator’s
inertia, P/™ is the mechanical power injected by a generator
1 € G, —P/" is the aggregate power consumed by constant
loads for ¢ € £, and P;; and B;; are the real power flow
from 4 to j and line susceptance, respectively. Finally, C; .
are the elements of the incidence matrix C' € RVI*I€l of the
graph GV, ) such that C; . = —1life=ji€ & Cie =1
if e=1j € £ and C; . = 0 otherwise.

Equation (1) describes the evolution of the frequency and
line flows when their values are close to schedule values P0
and w°. In other words, P;; = P}y +0P;; and w; = wo +(5w2
with §F;; and dw; small enough Wlthout loss of generality,
we take here wy = 0. We also assume purely inductive

lines as well as the standard decoupling approximation [26].
The analysis can be extended to networks with constant
R/X ratio [27]. We refer the reader to [28] for a thorough
motivation of the model.

For notational convenience we will use whenever needed
the vector form of (1), i.e.

Mgwg = Pg" — (dg + Lig) —CgP
0=PF —(de+dg)— CpP
P=DgCTw
d = Dw

where the matrices Cz and Cg are defined by splitting the
the rows of C' between generator and load buses, i.e. C' =
[CE CE)T, D = diag(D;)ien, Dp = diag(B;;)ijee and
Mg = diag(M;)ieg-

B. Operational Constraints

We denote each control area using k£ and let £ :=
{1,...,|K|} denote the set of areas. Within each area, the
Automatic Generation Control (AGC) scheme seeks to re-
store the frequency to its nominal value as well as preserving
a constant power transfer outside the area, i.e.

Y > CieP.=efCP=PF;, VkeK, (2
i€ENy e€€

where NV, C A is the set of buses of area k € K, e, € RV,
k € K, is a vector with elements (ey); = 1 if ¢ € N and
(ex); = 0 otherwise, Py is the net scheduled power injection
of area k.

Notice that if we define

C = ExC 3)

with Ex = [e1 et and C e RIFIXIEL then
constraint (2) can be compactly expressed using
CP=P “4)

where P = (Py)rex € RIFL It is easy to see that Cy .
(e = 1j) is equal to 1 if ¢ is an inter-area line with 7 € N,
—1 if 45 is an inter-area line with 7 € N}, and O otherwise.

Finally, the thermal limit constraints are usually given by

P<P<P (5)

where P := (P.).ce and P = (P, )ecce represent the line
flow limits; usually P = —P so that we get |P| < P.

C. Fair Load Control

Suppose the system (1) is in equilibrium, i.e. w; = 0
for all 7 and Pz-j = 0 for all ¢j, and at time 0, there is
a disturbance, represented by a step change in the vector
P™ = (P™,i € N), that produces a power imbalance.
Then, we are interested in designing a distributed control
mechanism that rebalances the system while preserving the
frequency within its nominal value as well as maintaining
the operational constraints of Section II-B. Furthermore, we
would like this mechanism to produce an efficient allocation
among all the users (or loads) that are willing to adapt.
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We use ¢;(d;) and % to denote the cost or disutility of

changing the load consumption by d; and d; respectively.
This allows us to formally describe our notion of efficiency
in terms of the loads’ welfare. More precisely, we shall say
that a load control (d, d) is efficient if it solves the following

problem.
Problem 1 (WELFARE):
d?
minimize c;(d;) + =+ (6)

subject to operational constraints.
Problem 1 has been originally proposed in [28] for the
case where the operational constraint is to balance supply

and demand, i.e.
> (di+di)=> P™ (7)
iEN iEN

It is shown in [28] that when
di = c;" (wi), (8)

then (1) is a distributed primal-dual algorithm that solves (6)
subject to (7).

Therefore, one can use problem (6)-(7) to forward en-
gineering the desired controllers, by means of primal-dual
decomposition, that can rebalance supply and demand. Like
primary frequency control, the system (1) and (8) suffers
from the disadvantage that the optimal solution of (6)-(7)
may not recover the frequency to the nominal value and
satisfy the additional operational constraints of Section II-B.

In the next section we shall see that a clever modification
of (6)-(7) will be able to restore the nominal frequency while
maintaining the interpretation of (1) as a component of the
primal-dual algorithm that solves the modified optimization
problem. An additional byproduct of the formulation is that
we can also impose any type of linear equality and inequality
constraint that the operator may require.

III. OPTIMAL LOAD-SIDE CONTROL

We now proceed to describe the optimization problem that
will be used to derive the distributed controllers that achieve
our goals. The crux of our solution comes from including
additional constraints to Problem 1 that implicitly guarantee
the desired operational constraints, yet still preserves the
desired structure which allows the use of (1) as part of the
optimization algorithm.

Thus, we will use the following modified version of
Problem 1:

Problem 2 (OLC):

N d2
m;lir;lvze ZEZN ci(dy)+ %) (9a)
subject to
—(d+d)y=cCP (9b)
P™ —d= Lpv (9c)
CDpCTv="P (9d)
P<DgCTv<P (9e)

where Ly := CDpCT is the B ;-weighted Laplacian
matrix.

Although not clear at first sight, the constraint (9c)
implicitly enforces that any optimal solution of OLC
(d*,d*,P*,v*) will restore the frequency to its nominal
value, i.e. c?j = D;w* = 0. Similarly, we will use con-
straint (9d) to impose (2) (or equivalently (4)) and (9e) to
impose (5).

Throughout this paper we make the following assump-
tions:

Assumption 1 (Cost function): The cost function ¢;(d;) is
a-strongly convex and second order continuously differen-
tiable (¢; € C? with ¢/(d;) > a > 0) in the interior of
its domain D; := [d;,d;] € R, such that ¢;(d;) — 400
whenever d; — 0D;.

Assumption 2 (Slater Condition): The OLC problem 9)
is feasible and there 1s at least one feasible (d, d, P,v) such
that d € IntD := H D [29, Ch. 5.2.3].

The remainder of thls section is devoted to understanding
the properties of the optimal solutions of OLC. We will
use v;, A; and 7, as Lagrange multipliers of constraints
(9b), (9¢) and (9d), and pj; and p;; as multipliers of the
right and left constraints of (9e), respectively. In order to
make the presentation more compact sometimes we will
use ¢ = (P,v) € REFWVT and o = (v, \,m,pT,p7) €
REVIHIKIH2IEL a5 well as o; = (v, \i), or = (m) and
oij = (p;,p;) We will also use p:= (p*,p7).

Next, we consider the dual function D(o) of the OLC
problem.

D(0) = inf L(d,d, z,0) (10)
d,d,x
where
i 2o .
L(d,d,z,0) = ;v(ci(di) + 2Di) +vT(P™ — (d +d)
—CP)+ A'(P™ —d— Lgv) + 77 (CDCTv — P)
+ ™ (DpCTv — P) + p~T(P — DpCTv)
- i
= Z ci(d N +vi)d; + di_ vid; + (vi + Xi) P}")
2D;
ieN
— PTCTy — T (LpA — CDCTr — CDp(p™ — p7))

—a'p— pTP+p TP
(11 3

Since ¢;(d;) and % are radially unbounded, the mini-
mization over d and d in (10) is always finite for given z
and 0. However, whenever CTv # 0 or LgpA—CDpCTr—
CDpg(p™ — p~) # 0, one can modify P or v to arbitrarily
decrease (11). Thus, the infimum is attained if and only if
we have

ctv=0 and (12a)
L\ —CDpCTrn —CDg(p™ —p~) =0. (12b)
Moreover, the minimum value must satisfy
d;
C;(dy) :l/1+>\l and - =V, Vi EN. (13)

D;
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Using (12) and (13) we can compute the dual function

—00

oceN

14
otherwise, (14

where
N = {o € R¥VIFIEF2IE]; (122) and (12b) }

and the function ®(o) is decoupled in o; = (v;, \;), o =
(mk) and o35 = (pj;, p;;). That is,

=D ®i(o1)+ > Prlon) + Y (o) (19)
ieEN kex ijeE
where @, (o) = —mx Pp, ®ij(0i;) = pi;Pi; — pj'jpij and
®;(0;) = Ci(di(ai))+(Vi+)\i)(Pim_di(Ui))_717/127 (16)
with
di(03) = ¢ (v + Ni).- (17)

The dual problem of the OLC (DOLC) is then given by

DOLC:
maximize Z D;(vi, \i) + Z Dy (7)) + Z D, (pij)
vATP ieEN keK ije€
subject to (12a) and (12b)
p”>0 pi; =0, ije & (18)
Clearly, DOLC is feasible (e.g. take ¢ = 0). Then,

Assumption 2 implies dual optimal is attained.

Although D(o) is only finite on N, ®,(0;), Pr(ox) and
®;;(0;;) are finite everywhere. Thus sometimes we use the
extended version of the dual function (15) instead of D(o),
knowing that D(c) = ®(o) for o € N. Given any S C N,
K C KorU C & we also define ®s(og) := > ;cq Pi(0i),
Pk (oK) =D rer Prlow) and @y (ov) = 37 5cr Pij(oij)
such that ®(0) = Ppr(on) + Prc(ok) + Pe(og).

The following lemmas describe several properties of our
optimization problem that we will use in latter sections.

Lemma 3 (Strict concavity of ®s(os)): Given any set
S C N, nonempty, the function ®g5(cg) is the sum of
strictly concave functions ®;(o;) and it is therefore strictly
concave. Moreover, the (extended) dual function ®(o) is
strictly concave with respect to oar = (v, \).

The proof of this lemma can be found in [25].

Lemma 4 (OLC Optimality): Given a connected graph
G(N,E), then there exists a scalar v* such that
(d*, d*, x*,0™") is a primal-dual optimal solution of OLC and
DOLC if and only if (d*, d*, a*) is primal feasible (satisfies
(9b)-(9e)), o* is dual feasible (satisfies (12) and (18)),

di =Dy, di =& (v + X)), vf =v*, i €N, (19)
and
P;ﬁ-j*(Bij( r—v)) — P;)=0, ije€g, (20a)
pij (Bij — Bij(vi —v})) =0, ije€ (20b)

Moreover, d*, d*, v* and \* are unique with v* = 0.

Proof: Assumptions 1 and 2 guarantee that the solution
to the primal (OLC) is finite. Moreover, since by Assumption
2 there is a feasible d € IntD, then the Slater condition is
satisfied [29] and there is zero duality gap.

Thus, since OLC only has linear equality constraints,
we can use Karush-Kuhn-Tucker (KKT) conditions [29]
to characterize the primal dual optimal solution. Thus
(d*,d*, x*,o*) is primal dual optimal if and only if we have:

(i) Primal feasibility: (9b)-(9e)

(i) Dual feasibility: (12) and (18)

(iii) Stationarity:
%L(d* d* a0 *) =0,
and 92 (d*,d*,z*,0%) =0.

9 L@, d* " 0") =0
od

(iv) Complementary slackness:
pu *(Bij(vi —vj) — ijeé&

and
pi; (P — ij €E.

KKT conditions (i), (ii) and (iv) are already implicit by
assumptions of the lemma. Furthermore, since the graph G
is connected then (12a) is equivalent to

Bij(v; —vj)) =0,

vi=v" YieN.

which is the third condition of (19).
Now, using (11), Stationarity (iii) is equivalent to (ii) and

OL (@, % 0%) = ) — (v + X)) =0 Qo)
od;
L, CZ’-‘

which are the remaining conditions of (19).
32
Since ¢;(d;) and 2(%_ are strictly convex functions, it is
easy to show that v and A} are unique. To show v* = 0 we
use (i). Adding (9b) over i € N gives

0=">" (P;" — (dF +dY) Za&)

ieN ecé

=S (P —(di +d}) — Y (CiPe+CjePe)
ieN e=ije€

=" (P - (@ +d))) (22)
ieN

and similarly (9¢) gives

0=> P"—d;

iEN

(23)

Thus, subtracting (22) from (23) gives 0 = >, CZ;k =
Sien Div* = v* > cn Dy and since D; > 0 Vi € N, it
follows that v* = 0. |
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IV. DISTRIBUTED OPTIMAL LOAD CONTROL

We now show how to leverage the power network dy-
namics to solve the OLC problem in a distributed way. Our
solution is based on the classical primal dual optimization
algorithm that has been of great use to design congestion
control mechanisms in communication networks [30]-[33].

Let

L(z,0) = minimize L(d,d,z,0)

d,d
= L(d(0), CZ(O’), x,0)
= (o) - PTCTy

— T (LpA - CDpCTr — CDp(p™ —p7)) (24

where L(d, cz,%o) is defined as in (11), d(o) := (d;(0;))
and d(o) := (d;(0;)) according to (19).
We then propose the following partial primal-dual law

vg = ¢g (PG — (dg(og) + Dgvg) — CgP) (25a)
0=Pr — (dz(og) + Devg) — Co P (25b)
A= (P™ —d(o) — Lpv) (25¢)
#=(" (CDCTv - P) (25d)

pt =" [DpCTv — P ; (25¢)
p-=¢" [P~ DpCTo] (25f)
P =x"(C"v) (25g)
=y’ (LBA —CDpCTr — CDg(pt — p*)) (25h)
where ¢4 = diag(¢})icg, ¢* = diag((Miens (7 =

diag((T)rex, (7 = diag(¢f )eee, ¢7 = ding(¢f )eee
X" = diag(x{)eee and x" = diag(x{ )ien-

The operator [-]; is a element-wise projection that main-
tains each element of the w(t) within the positive orthant

when @ = [}, i.e. given any vector a with same dimension
as u then [a] is defined element-wise by
ae ifa,>0o0ru, >0
faff, = g0 e Do)
0  otherwise.

Equations (25a), (25b) and (25g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (25) for the special case when (; = M[l and
XZ = B,;. Therefore, we can interpret the frequency w; as
the Lagrange multiplier v;.

This observation motivates us to propose a distributed load
control scheme that is naturally decomposed into

Power Network Dynamics:

wg = Mg (Pg' — (dg + dg) — CgP) (27a)
0=PF —(dy+ds)—CrP (27b)
P=DpC"w (27¢)
d = Dw (274d)

d Power Network Dynamics

1 (w, P) ]
w
0
+
di() fe—3
) G
0 .
A
d Dynamic Load Control

A4

(A7, %, p7,0)

Fig. 1: Control architecture derived from OLC

and
Dynamic Load Control:

A= (P™ —d— Lpv) (28a)
o (OD 5CTv — 15) (28b)
pt=¢" [DpCTv— P, (28¢)
pm=C" [P—DpCTo] (28d)

o =x" (LpA— CDpCTn = CDp(p" —p7)) (28e)
d=c" (w+N) (28f)

Equations (27) and (28) show how the network dynam-
ics can be complemented with dynamic load control such
that the whole system amounts to a distributed primal-dual
algorithm that tries to find a saddle point on L(z,0). We
will show in the next section that this system does achieve
optimality as intended.

Figure 1 also shows the unusual control architecture
derived from our OLC problem. Unlike traditional observer-
based controller design archtecture [34], our dynamic load
control block does not try to estimate state of the network.
Instead, it drives the network towards the desired state using
a shared static feedback loop, i.e. d;(A; + w;).

V. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (27)-(28) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits. Due to space constraints several proofs are omitted
and can be found in [35].

We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (27)-(28) is an optimal
solution of (9). This guarantees that a stationary point of the
system efficiently balances supply and demand and achieves
zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), di(t), P(t), v(t),w(t), A(t), m(t), p* (£), p~ (1))
converges to an equilibrium point of (27)-(28). Moreover,
the equilibrium point will satisfy (2) and (5).

Theorem 5 (Optimality): A point p* = (d*,d*,x*,a*) is
an equilibrium point of (27)-(28) if and only if is a primal-
dual optimal solution to the OLC problem.
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Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d*,d*, z*,0*) be an equilibrium point of
(27)-(28). Then, by (27¢) and (28¢c)-(28e), o* is dual feasible.

Similarly, since @; = 0, A; = 0, 775 = 0, p;; =0 and
p;; = 0, then (27a)-(27b) and (28a)-(28d) are equivalent to
primal feasibility, i.e. (d*,d*, P*,v*) is a feasible point of
(9). Finally, by definition of (27)-(28) conditions (19) and
(20) are always satisfied by any equilibrium point. Thus
we are under the conditions of Lemma 4 and therefore
p* = (d*,ci*,:v*,cr*) is primal-dual optimal which also
implies that w* = 0. [ |

Remark 6: Theorem 5 implies that every equilibrium so-
Iution of (27)-(28) is optimal with respect to OLC. However,
it guarantees neither convergence to it nor that the line flows
satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P(0),v(0),w(0), A(0), 7 (0),
pT(0),p7(0)), the system (27)-(28) converges to one of
such optimal solution. Furthermore, we will show that P(t)
converges to a P* that satisfies (2) and (5).

Since we showed in Section IV that (27)-(28) are just
a special case of (25), we will provide our convergence
result for (25). Our global convergence proof leverages the
results of [36] on global convergence in network flow control.
Unfortunately, the results presented there cannot be readily
applied as (25) is not a full primal-dual gradient law due
to constraint (25b). However, the next lemma shows that
(25) amounts to a primal-dual gradient law with respect to
a different Lagrangian.

Lemma 7 (Primal-dual Gradient Law): Let y = (vg,
A, 7, p)! and consider the reduced Lagrangian
L(z,y) = maximize L(x,0). (29)
ve

Then, L(z,y) is concave in y, convex in = and the dynamics
(25) amount to

) Y[aL( )Tr and XaL( )T (30)
= —L(x, Tt =—X_—L(z,
Y dy Y , O Y
where the projection [a];r only acts in the p positions of a,
Y = blockdiag((é,C/\C”,(f’ig“”f) and X = blockdiag(
xXox).

Moreover, under Assumption 1, any saddle point (z*,y*)
of L(z,y) is unique in vg and A.

Proof: See [35]. ]
We will also use the following lemma.
Lemma 8 (Differentiability of v} (z,y)): Given any

(x,y), the maximizer of (29), v}(x,y), is continuously
differentiable provided c;(-) is strongly convex. Furthermore,
the derivative is given by

o ) P v
%Vﬁ(x,y): [—(DL +d{C)71C£ ‘ 0] vr (31)

vg Ag Az

0 o
Gy E@ =10 [0 [~(De+dy) 7 [0]0] ve (D)

IRecall that p = (pt, p7)

where Dg := diag(D;);cs and

, Jdiag(di(A + v (2,9)))ies S CL
5 | diag(d (A + v4))ies ifSCg
Proof: See [35]. |

We now present our main convergence result. Let £ be
the set of equilibrium points of (25)

E = {(m,a) : g—i(m,o) =0, Z—ﬁ(m,a) = O} ,

which by Theorem 5 is the set of optimal solutions of the
OLC problem.

Theorem 9 (Global Convergence): The set I of equilib-
rium points of the partial primal dual algorithm (25) is
globally asymptotically stable. Furthermore, each individual
trajectory converges to a unique point within E that is
optimal with respect to the OLC problem.

Proof: See [35]. |

Finally, the following theorem shows that under mild con-
ditions the system is able to restore the inter-area flows (2)
and maintain the line flows within the thermal limits (5).

Theorem 10 (Inter-area Constraints and Thermal Limits):
Given any primal-dual optimal solution (z*,0*) € E, the
optimal line flow vector P* satisfies (2). Furthermore, if
P(0) = DpCT¢", then P;; = B;;(v; — v}) and therefore
(5) holds.

Proof: By optimality, P* and v* must satisfy

P™ —d* = CP* = Lgv* = CDgCTv* (33)
Therefore using primal feasibility, (3) and (33) we have
P =CDpC"v* = ExCDC™v*

= ExCP* = CP*
which is exactly (4).

Finally, to show that P;; = B;; (v —v}) we will use (27c¢).
Integrating (27c) over time gives

P(t)—P(O)—/O DpCTy(s)ds.

Therefore, since P(t) — P*, we have P* = P(0) +
DpCTO* where 6* is any finite vector satisfying CT6* =
fooo CTu(s)ds.

Again by primal feasibility

CDpCTv* = Lpv* = CP* = C(P(0) + DCT6*)
= CDpCT(0° +6%).

Thus, we must have v* = (§° 4+ 6*) + a1 and it follows then
that P* = DpCT(0°+60*) = DpC” (v* —al) = DgCTv*.
Therefore, since 13y primal feasibility P < DpCTy* < P,
then P < P* < P. |

Remark 11: The assumption of Theorem 10 of having
P(0) = DpCT#Y is equivalent to substituting (27) with

g = M5 (P§" — (dg + Dgwg) — CgDpC"0)  (34a)
0=P" —(de + Drwg) — CeDCTo (34b)
0 =w (34¢)

which is the linearization of the power network using phases
instead of line flows as states. Therefore, this assumption can
be done without loss of generality.
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Fig. 2: IEEE 39 bus system: New England

VI. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in
Figure 2, to test our scheme. We assume that the system has
two independent control areas that are connected through
lines (1,2), (2,3) and (26,27). The network parameters
as well as the initial stationary point (pre fault state) were
obtained from the Power System Toolbox [37] data set.

Each bus is assumed to have a controllable load with D; =
[—dmax, dmax), With diax = 1p.u. on a 100MVA base and
disutility function

d;
cz-(di):/0 tan(zdwaxs)ds:—

Thus, d;(0;) = ¢, (w; + \i) = Zdmax arctan(w; + A;). See
Figure 3 for an illustration of both ¢;(d;) and d;(o;).

2dmax

In(| COS(T

25 1

-1 -05 0.5 1 10 5 0 5 10

0
d; wi+ A

Fig. 3: Disutility ¢;(d;) and load function d;(w; + ;)

Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter
D;=02VieNand ! = =( =¢ =¢ =1,
forall i € N, k € K and e € £. These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of P"" are corrected so
that they initially add up to zero by evenly distributing
the mismatch among the load buses. P is obtained from
the starting stationary condition. We initially set P and P
sufficiently large so that they are not binding.

We simulate the OLC-system as well as the swing dy-
namics (27) without load control (d; = 0), after introducing a
perturbation at bus 29 of P55 = —2p.u.. Figures 4 and 5 show
the evolution of the bus frequencies for the uncontrolled

dy)])-

(a) Swing dynamics

(b) OLC unconstr (c) OLC area-constr

005 005
01 mU
015 EX0

-0z 021
025| 025,

wi rad /s

03] 03,

035 035,

EN 04,

045 0. 45‘

B 20 % 3 % 5 10 s 2 2 . 0 5 0 15
t t t

Fig. 4: Frequency evolution: Area 1

(a) Swing dynamics (b) OLC unconstr (c) OLC area-constr

w; rad/s

Fig. 5: Frequency evolution: Area 2

swing dynamics (a), the OLC system without inter-area
constraints (b), and the OLC with area constraints (c).

It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLC seems to be similar or
even better than the swing dynamics, as shown in Figures 4
and 5.

LMPs Inter area line flows

a D@* ‘f‘:
A ‘
|/ 05

,no‘v

Fig. 6: LMPs and inter area lines flows: no thermal limits

LMPs Inter area line flows

Fig. 7: LMPs and inter area lines flows: with thermal limits

Now, we illustrate the action of the thermal constraints
by adding a constraint of P, = 2.6p.u. and P = —2.6p.u.
to the tie lines between areas. Figure 6 shows the values of
the multipliers \;, that correspond to the Locational Marginal
Prices (LMPs), and the line flows of the tie lines for the same
scenario displayed in Figures 4c and Sc, i.e. without thermal
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limits. It can be seen that neither the initial condition, nor the
new steady state satisfy the thermal limit (shown by a dashed
line). However, once we add thermal limits to our OLC
scheme, we can see in Figure 7 that the system converges to
a new operating point that satisfies our constraints.

VII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flows and
thermal limits. Our distributed solution converges for every
initial condition, and simulation results verify our theoretical
analysis.
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