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Abstract

There are three key factors of a system of coupled oscillators that characterize the interaction among them:

coupling (how to affect), delay (when to affect) and topology (whom to affect). For each of them, the existing

work has mainly focused on special cases. With new angles and tools, this paper makes progress in relaxing some

assumptions of these factors. There are three main results in this paper. First, by using results from algebraic

graph theory, a sufficient condition is obtained which can be used to check equilibrium stability. This condition

works for arbitrary topology. It generalizes existing results and also leads to the first sufficient condition on the

coupling function with which the system is guaranteed to reach synchronization. Second, it is known that identical

oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete graph. Using our

results, we demonstrate that for many cases certain structures instead of exact shape of the coupling function such

as symmetry and concavity are the keys for global synchronization. Finally, the effect of heterogenous delays

is investigated. We develop a new framework by constructing a non-delayed phase model that approximates the

original one in the continuum limit. We further derive how its stability properties depend on the delay distribution.

In particular, we show that heterogeneity, i.e. wider delay distribution, can help reach in-phase synchronization.

I. INTRODUCTION

The system of coupled oscillators has been widely studied in different disciplines ranging from biology [1], [2],

[3], [4], [5] and chemistry [6], [7] to engineering [8], [9] and physics [10], [11]. The possible behavior of such a

system can be complex. For example, the intrinsic symmetry of the network can produce multiple limit cycles or

equilibria with relatively fixed phases (phase-locked trajectories) [12], which in many cases can be stable [13].

Also, the heterogeneity in the natural oscillation frequency can lead to incoherence [14] or even chaos [15].

One particular interesting question is whether the coupled oscillators will synchronize in phase in the long

run. Besides its clear theoretical value, it also has rich applications in practice such as clock synchronization in

distributed systems. There has been active research work regarding this question, see e.g., [16], [17], [18], [19].

In essence, there are three key factors of a system of coupled oscillators that characterize the interaction among

oscillators: coupling, delay and topology. For each of them, the existing work has mainly focused on special
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cases as explained below. In this paper, further research will be discussed on each of these three factors:

• Topology (whom to affect, Section IV-B): Current results are mainly restricted to complete graph or a ring

topology for analytical tractability. We develop a graph based sufficient condition which can be used to

check equilibrium stability for any topology. It also leads to the coupling function with which the system is

guaranteed to reach synchronization.

• Coupling (how to affect, Section IV-C): The classical Kuramoto model [14] assumes a sin() coupling

function. Our study hints that certain symmetry and convexity structures are enough to guarantee global

synchronization.

• Delay (when to affect, Section V). Existing work generally assumes zero delay among oscillators, which

is clearly not satisfactory especially if the oscillating frequencies are high. We develop a new framework

to study them by constructing a non-delayed phase model that is equivalent to the original one. Using this

result, we show that wider delay distribution can help reach synchronization.

In this paper we study weakly coupled oscillators, which can be either pulse-coupled or phase-coupled. Although

most of the results are presented for phase-coupled oscillators, they can be readily extended for pulse-coupled

oscillators (see, e.g., [20], [21]). It is worth noticing that results in Section IV are independent of the strength of

the coupling and therefore the weak coupling assumption is not necessary there.

The paper is organized as follows. After introducing the model and notation in Section II, we study three

motivating examples in Section III. These examples provide basic intuition about the possible complex behavior

of networks with coupled oscillators and therefore motivate further study. With some facts from algebraic graph

theory and potential dynamics in section IV-A, we present the negative cut instability theorem in section IV-B1

to check whether an equilibrium is unstable. This then leads to Theorem 6 in section IV-B2 which identifies

a class of coupling functions with which the system always synchronizes in phase. It is well known that the

Kuramoto model produces global synchronization over a complete graph. In section IV-C, we demonstrate that

a large class of coupling functions, in which the Kuramoto model is a special case, guarantee the instability of

most of the limit cycles in a complete graph network. Section V is devoted to the discussion of the effect of

delay. An equivale nt non-delayed phase model is constructed whose coupling function is the convolution of

the original coupling function and the delay distribution. Using this approach, it is shown that sometimes more

heterogeneous delays among oscillators can help reach synchronization. We conclude the paper in Section VI.
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II. MODEL

In this section we describe two different models of coupled oscillators. Their difference arises in the way

that the oscillators interact between each other, and their dynamics can be quite different. However, when the

interactions are weak (weak coupling), both systems behave similarly and share the same approximation. This

allows us to study them under a common framework.

Consider the set of N identical oscillators, N , whose states can be represented by phase variables θi ∈ S1 for

each oscillator i ∈ N . In the absence of coupling, we have

θ̇i = ω, ∀i ∈ N .

Here, S1 represents the unit circle, or equivalently the interval [0, 2π] with 0 and 2π identified (0 ≡ 2π), and

ω = 2π
T denotes the natural frequency of the oscillation.

The state space of the whole system is the N dimensional torus T N which corresponds to the direct sum of

N unit circles, i.e. φ = (φ1, . . . , φN )T ∈ T N = S11 ⊕ . . .⊕ S1N .

A. Pulse-coupled Oscillators

In the canonical model of pulse-coupled oscillators [21], an oscillator j ∈ N sends out a pulse whenever it

crosses zero (θj = 0). When oscillator i receives a pulse, it will change its position from θi to θi + εκij(θi).

The function κij represents how other oscillators’ actions affect oscillator i and the scalar ε > 0 is a measure

of the coupling strength. These jumps can be modeled by a Dirac’s delta function δ satisfying δ(t) = 0 ∀t 6= 0,

δ(0) = +∞, and
∫
δ(s)ds = 1. The coupled dynamics is represented by

θ̇i(t) = ω + εω
∑
j∈Ni

κij(θi(t))δ(θj(t− ηij)), (1)

where ηij > 0 is the propagation delay between oscillators i and j (ηij = ηji), and Ni is the set of i’s neighbors.

The factor of ω in the sum is needed to keep the size of the jump within εκij(θi). This is because θj(t) behaves

like ωt when crosses zero and therefore the jump produced by δ(θj(t)) is of size
∫
δ(θj(t))dt = ω−1 [21].

This pulse-like interaction between oscillators was first introduced by Peskin [2] in 1975 as a model of the

pacemaker cells of the heart, although the canonic form did not appear in the literature until 1999 [21]. The

coupling function κij is usually classified based on its sign; if κij > 0, the coupling is excitatory and if κij < 0,

then it is inhibitory coupling. This classification is based on models of biological oscillatory networks, but is

not sufficient even to characterize the system’s qualitative behavior and usually a first order derivative conditions
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is needed to obtain desired synchronization.
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Fig. 1. Pulse-coupled oscillators with attractive coupling.

Here we introduce a different criterion that takes into account the qualitative behavior of the system. After one

period, if the net effect of the mutual jumps brings a pair of oscillators closer, we call it attractive coupling. If

the oscillators are brought further apart, it is considered to be repulsive coupling. The former can be achieved

for instance if κij(θ) ≤ 0 for θ ∈ [0, π) and κij(θ) ≥ 0 for θ ∈ [π, 2π). See Figure 1 for an illustration of an

attractive coupling κij and its effect on the relative phases.

In general, when the number of oscillators is large, there are several different limit cycles besides the in-phase

synchronization and many of them can be stable [13]. Thus, predicting whether the system will reach in-phase

synchronization is generally not an easy task. The problem was solved for the complete graph case by Mirollo

and Strogatz in 1990 [22] by showing that if κij(θ) is strictly increasing (which resembles attractive coupling),

then for almost every initial condition, the system can synchronize in phase in the long run.

The analysis in [22] strongly depends on the assumptions of complete graph and zero delay among oscillators.

When the graph is no longer complete, each pulse receives a different firing pattern which makes the proof in

[22] no longer valid. On the other hand, when delay among oscillators is introduced, which is necessary for many

interesting cases in practice, the analysis becomes intractable. Even for the case of two oscillators, the number

of possibilities to be considered is large [23], [24].

B. Phase-coupled Oscillators

In the model of phase-coupled oscillators, the interaction between neighboring oscillators i and j ∈ Ni is

modeled by change of the oscillating speeds. Although in general the speed change can be a function of both
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phases (θi, θj), in many scenarios it reduces to a function of the phase differences fij(φj(t− ηij)−φi(t)). Thus,

since the net speed change of oscillator i amounts to the sum of the effects of its neighbors, the full dynamics

is described by

φ̇i(t) = ω + ε
∑
j∈Ni

fij(φj(t− ηij)− φi(t)). (2)

The function fij is usually called coupling function, and as before ηij represents delay and Ni is the set of

neighbors of i.

A similar definition for attractive and repulsive couplings can be done in this model. We say that the coupling

function fij is attractive if, without delays, the change in speeds brings oscillators closer, and repulsive if they

are brought apart. Figure 2 shows typical attractive and repulsive coupling functions where arrows represent the

speed change produced by the other oscillator; if the pointing direction is counter clockwise, the oscillator speeds

up, and otherwise it slows down.
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Fig. 2. Phase-coupled oscillators with attractive and repulsive coupling.

When fij = K
N sin() (attractive coupling), this model is known as the classical Kuramoto model [25]. Intensive

research work has been conducted on this model, however convergence results are usually limited to cases with

all to all coupling (Ni = N\{i}, i.e., complete graph topology) and no delay (ηij = 0), see e.g. [19], or to some

regions of the state space [26].
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C. Weak Coupling Approximation

Throughout this paper we assume that for both models the coupling strength is weak, i.e. 1� ε > 0. For pulse-

coupled oscillators, this implies that the effect of the jumps originated by each neighbor can be approximated by

their average [20]. For phase-coupled oscillators, it implies that to the first order φi(t−ηij) is well approximated

by φi(t)− ωηij .
The effect of these approximations allows us to completely capture the behavior of both models using the

following equation where we assume that every oscillator has the same natural frequency ω

φ̇i = ε
∑
j∈Ni

fij(φj − φi − ψij). (3)

For pulse-coupled oscillators, the coupling function is given by

fij(θ) =
ω

2π
κij(−θ), (4)

and the phase lag ψij = ωηij represents the distance that oscillator i’s phase can travel along the unit circle during

the delay time ηij . Equation (4) also shows that the attractive/repulsive coupling classification of both models

are in fact equivalent, since in order to produce the same effect κij and fij should be mirrored, as illustrated in

Figure 1 and Figure 2.

Equation (3) captures the relative change of the phases and therefore any solution to (3) can be immediately

translated to either (1) or (2) by adding ωt. For example, if φ∗ is an equilibrium of (3), by adding ωt, we obtain

a limit cycle in the previous models.

From now on we will concentrate on (3) with the understanding that any convergence result derived will be

immediately true for the original models. We are interested in the attracting properties of phase-locked invariant

orbits within T N , which can be represented by

φ(t) = ω∗t1N + φ∗,

where 1N = (1, . . . , 1)T ∈ T N , and φ∗ and ω∗ are solutions to

ω∗ = ε
∑
j∈Ni

fij(φ
∗
j − φ∗i − ψij), ∀i. (5)

Whenever the system reaches one of these orbits, we say that it is synchronized or phase-locked. If furthermore,

all the elements of φ∗ are equal, we say the system is synchronized in-phase or that it is in-phase locked. It is

easy to check that for a given equilibrium φ∗ of (3), any solution of the form φ∗ + λ1N , with λ ∈ R, is also an
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equilibrium that identifies the same limit cycle. Therefore, two equilibria φ1,∗ and φ2,∗ will be considered to be

equivalent, if both identifies the same orbit, or equivalently, if both belongs to the same set of equilibria

Eφ∗ := {φ ∈ T N |φ = φ∗ + λ1N , λ ∈ R}.

III. MOTIVATING EXAMPLES

In order to gain insight on the complexity of this problem, and its dependence on the shape of fij , the network

topology and delay, we present three examples.

Example 1 (Two Oscillators without delay) We first consider two connected oscillators without delay, and

symmetric coupling, i.e., N = {1, 2}, ψij = 0 and fij = fji = f . Let f has a shape as in Figure 3 with

f(0) = f(π) = 0. In this case (3) reduces to

φ̇i = εf(φj − φi). i, j ∈ {1, 2}, j 6= i. (6)
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Fig. 3. Plot of function f

Equation (6) has only two equilibria sets, Eφ∗
0

and Eφ∗
π
; one in-phase identified by φ∗0 = 1N = (1, 1)T and

another in anti-phase identified by φ∗π = (0, π)T . Also, because f(θ) ≥ 0 for θ ∈ [0, π] and f(θ) ≤ 0 for

θ ∈ [π, 2π], the coupling is attractive and thus unless the initial conditions belong to Eφ∗
π

both oscillators will

always converge to Eφ∗
0

and thus synchronize in-phase.

However, this implies that Theorem 2 of [18] cannot hold, i.e. the in-phase equilibria set Eφ∗
0

is not globally

asymptotically stable, since there is a set of initial conditions that do not converge to it. Furthermore, the

Lyapunov function used in [18], |φ|2, does not work in the whole the state space. This can be readily verified in

Figure 4(b), where |φ(t)|2 can increase along trajectories even when the system synchronizes in-phase.

The preceding example is still simple in the sense that the anti-phase equilibria set Eφ∗
π

is unstable (as it is shown

in Section IV-B1). However, when N > 2, new stable orbits Eφ∗ can appear as we show in the next example.

October 18, 2010 DRAFT



8

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

φi

π

(a) Phases

0 0.5 1 1.5 2 2.5 3 3.5 4
6

8

10

12

14

16

18

20

t

|φi|2

(b) Lyapunov candidate increasing

Fig. 4. A counter example for the Lyapunov function in [18]

Example 2 (Three oscillators without delay) Consider now three oscillators coupled all to all with the same

function f as before and zero delay. Again, since f is odd, each phase locked solution of (5) must be an

equilibrium (see Corollary 2.2 of [16]). However, due to network symmetry, a new stable Eφ∗ appears, with

φ∗ = (−2π
3 , 0,

2π
3 )T . Figure 5 illustrates it by showing the trajectories starting close to the set eventually converge

to it, which suggests that the equilibrium set Eφ∗ is stable. This example hints that the problem can be very

complex. Since as N grows, the number of sets Eφ∗ can explode and become difficult to locate for an arbitrary

graph.
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Fig. 5. A stable non-in-phase equilibrium in Example 2

Example 3 (Two oscillators with delay) Finally, suppose that there are two oscillators with coupling function

H(φj − φi − ψij) = K sin(φj − φi − ψij), i.e., the classical Kuramoto model [14]. Then (3) becomes

φ̇i = ω + εK sin(φj − φi − ψ) i, j ∈ {1, 2}, j 6= i. (7)

In the absence of delays (ψ = 0) and for K > 0 the scenario is identical to Example 1 and thus the coupling is

attractive. Similarly, if K < 0, then the coupling is repulsive and the oscillators will move towards the anti-phase

state unless they start in phase. Therefore, when there is no delay, one would tend to use K > 0 in order to

synchronize in-phase.

What is interesting here is the effect of the delay. For instance, when ψij = π, a simple change of variable
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Fig. 6. Repulsive coupling without delay vs. Repulsive coupling with delay of π

φ̄1 = φ1, φ̄2 = φ2 − π transforms (6) into

˙̄φi = ω + εK sin(φ̄j − φ̄i) i, j ∈ {1, 2}, j 6= i.

Then from the previous discussion, by using attractive coupling (K > 0) the system will tend to align φ̄1 with

φ̄2. However, this implies that the phase difference between φ1 and φ2 is π. On the other hand, when repulsive

coupling (K < 0) is used the φ̄i variables reach the anti-phase configuration, which produces in turn in-phase

synchronization for the original system.

The intuition behind this behavior is that performing repulsive actions over another oscillator whose phase is

within π from where it is supposed to be has the net effect of bringing both oscillators closer instead of further

apart. See Figure 6 for an illustration of this effect.

IV. EFFECT OF TOPOLOGY AND COUPLING

In this section we concentrate on the class of coupling function fij with the following characteristics:

Assumption 1 Properties of fij:

(a) Symmetric coupling: fij = fji ∀ij.

(b) Odd: fij(−θ) = −fij(θ).

(c) C1: fij is continuously differentiable.

Throughout this section we assume that there are no delay within the network, i.e. ψij = 0 ∀ij ∈ E(G). Thus,

(3) reduces to

φ̇i = ε
∑
j∈Ni

fij(φj − φi). (8)

In the rest of this section we progressively show how Assumption 1 with some extra conditions on fij guarantees

in-phase synchronization for arbitrary graph. Since we know that the network can have many other phase-locked
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trajectories besides the in-phase one, our target is an almost global stability result [27], meaning that the set

of initial conditions that does not eventually lock in-phase has zero measure. Latter we show how most of the

phase-locked solution that appear on a complete graph are unstable under some general conditions on the structure

of the coupling function.

A. Preliminaries

We now introduce some prerequisites used in our later analysis together with some straightforward general-

ization of existing results.

1) Algebraic Graph Theory : We start by reviewing basic definitions and properties from graph theory [28],

[29] that are used in the paper. Let G be the connectivity graph that describes the coupling configuration. Each

graph is composed by two sets, V (G) and E(G) ⊂ V (G)× V (G), which are called vertex set and edge set,

respectively. Each individual vertex is represented by i or j, and each edge by either e or the pair ij. If the graph

is undirected, then ij and ji represent the same edge. Using this new framework, N = V (G) and Ni can be

compactly defined as Ni = {j ∈ V (G)|ij ∈ E(G)}.

An undirected graph G can be directed by giving a specific orientation σ to the elements in the set E(G). That

is, for any given edge e ∈ E(G), we designate one of the vertices to be the head and the other to be the tail. The

outcome of this operation is a directed graph Gσ, induced by G, where V (G) = V (Gσ) and for any ij ∈ E(G),

either ij ∈ E(Gσ) or ji ∈ E(Gσ), but not both. We also attach to the convention that if e = ij ∈ E(Gσ) then i

is the tail of e and j is its head.

Remark 1 Although all definitions described from now on implicitly require the graph to be oriented, the

properties used in this paper are independent of a particular orientation σ. We therefore drop the superscript σ

from Gσ with the understanding that G is now an induced directed graph with some fixed, but arbitrarily chosen,

orientation.

Each set V (G) and E(G) can be associated with a vector space over the real field. The vertex space V(G)

is the space of functions that maps V (G) into R|V (G)|, and the edge space E(G) is the analogous for E(G) and

R|E(G)|.

An oriented cycle L of the oriented graph G consists of an ordered sequence of vertices i1i2i3 . . . il where

i1 = il, ik 6= i1 appears only once for k ∈ {2, 3, ..., l − 1} and either ikik+1 ∈ E(G) or ik+1ik ∈ E(G). Let

E(L) denote the set of edges that are in L, if e = ikik+1 ∈ E(L), we say that e is oriented as L. Each oriented

October 18, 2010 DRAFT



11

cycle L determines an element zL ∈ E(G) as follows:

zL(ei) =


1 if e ∈ E(L) is oriented as L,

−1 if e ∈ E(L) is not oriented as L,

0 if e 6∈ E(L).

If we let L(G) be the set of all cycles within G, then the subspace Z(G) of E(G) spanned by all the vectors

{zL}L∈L(G),

Z(G) := span{zL}L∈L(G)

is called the cycle space.

Now let P = (V −, V +) be a partition of the vertex set V (G) such that V (G) = V − ∪V + and V − ∩V + = ∅.

The cut C(P ) associated with P , or equivalently C(V −, V +), is defined as C(P ) := {ij ∈ E(G)|i ∈ V −, j ∈

V +, or viceversa.}. Again, each partition also determines a vector cP ∈ E(G):

cP (e) =


1 if e goes from V − to V +,

−1 if e goes from V + to V −,

0 if e 6∈ E(V −, V +).

Analogously, the space spanned by all vectors cP is called the cut space and denoted by C(G). A basic property

of C(G) and Z(G) is that they are orthogonal complement; i.e. C(G)
⊕Z(G) = E(G) and C(G)⊥Z(G).

There are several matrices associated with the oriented graph G that embed information about its topology.

However, the one with most significance to this work is the oriented incidence matrix B ∈ R|V (G)|×|E(G)| where

B(i, e) =


1 if i is the head of e,

−1 if i is the tail e,

0 otherwise.

We now list some properties of B that are used in subsequent sections.

(a) The null-space of B is the cycle space Z(G).

i.e. Bz = 0 ⇐⇒ z ∈ Z(G).

(b) The range of BT is the cut space C(G), i.e., if z ∈ E(G) is equal to BTx for some x ∈ V(G), then

z ∈ C(G). Or in other words, the column vectors of BT span C(G).
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(c) If G is connected, then ker(BT ) = span(1N ).

2) Potential Dynamics : In Assumption 1, although fij being C1 is standard in order to study local stability

and sufficient to apply LaSalle’s invariance principle [30], the symmetry and odd assumptions have a stronger

effect on the dynamics. For example, under these assumptions the system (8) can be compactly rewritten in a

vector form as

φ̇ = −εBF (BTφ) (9)

where B is the adjacency matrix defined in Section IV-A1 and the map F : E(G)→ E(G) is

F (y) = (fij(yij))ij∈E(G).

This new representation has several properties. First, from the properties of B one can easily show that (5)

can only hold with ω∗ = 0 for arbitrary graphs [16] (since Nω∗ = ω∗1TN1N = −ε1TNBF (BTφ) = 0), which

implies that every phase-locked solution is an equilibrium of (8) and that every limit cycle of the original system

(3) can be represented by some E∗φ on (8).

Additionally, (9) makes evident the difference between two classes of Eφ∗ . In the first, φ∗ is an equilibrium

because F (BTφ∗) = 0 and therefore φ̇ = −εBF (BTφ∗) = −εB0 = 0. However, in the second class F (BTφ∗) 6=

0 but F (BTφ∗) = z ∈ Z(G), and therefore when F (BTφ∗) is multiplied by B we get φ̇ = −εBF (BTφ∗) =

−εBz = 0.

However, the most interesting consequence of (9) comes from interpreting F (y) as the gradient of a potential

function

W (y) =
∑

ij∈E(G)

∫ yij

0
fij(s)ds.

Then, by defining V (φ) = (W ◦BT )(φ) = W (BTφ), (9) becomes a gradient descent law for V (φ), i.e.,

φ̇ = −εBF (BTφ) = −εB∇W (BTφ) = −ε∇V (φ),

where in the last step above we used the property ∇(W ◦ BT )(φ) = B∇W (BTφ). This makes V (φ) a natural

Lyapunov function candidate since

V̇ (φ) = 〈∇V (φ), φ̇〉 = −ε |∇V (φ)|2 = −ε
∣∣∣φ̇∣∣∣2 ≤ 0.

Furthermore, since the trajectories of (9) are constrained into the N -dimensional torus T N , which is compact,

we are ready to apply LaSalle’s invariance principle. Therefore, for every initial condition, the trajectory converges
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to the largest invariant set M ⊂ {V̇ ≡ 0}.

Finally, since V̇ (φ) ≡ 0 implies
∣∣∣φ̇∣∣∣ ≡ 0 we conclude that M equals the set of all equilibria E = {φ ∈

T N |φ̇ ≡ 0} =
⋃
φ∗ Eφ∗ . So we have proved the following proposition.

Proposition 1 (Global convergence) The dynamics (8) under Assumption 1 converges for every initial condi-

tion to the set of equilibrium points E. �

Remark 2 Proposition 1 is a generalization of the results of [17] where only the Kuramoto model was considered.

Clearly, this is not enough to show almost global stability, since it is possible to have other stable phase-locked

equilibria sets besides the in-phase one. However, if we are able show that all the non-in-phase equilibria are

unstable, then almost global stability follows. That is the focus of the next section.

B. Negative Cut Instability Condition

We now present the main results of this section. Our technique can be viewed as a generalization of [19]. By

means of algebraic graph theory, we provide a better stability analysis of the equilibria under a more general

framework. We further use the new stability results to characterize fij that guarantees almost global stability.

1) Local Stability Analysis: Given an equilibrium point φ∗, the first order approximation of (9) around φ∗ is

δφ̇ = −εB
[
∂

∂y
F (BTφ∗)

]
BT δφ,

were δφ = φ− φ∗ is the incremental phase variable, and ∂
∂yF (BTφ∗) ∈ R|E(G)|×|E(G)| is the Jacobian of F (y)

evaluated at BTφ∗, i.e.,
∂

∂y
F (BTφ∗) = diag

(
{f ′ij(φ∗j − φ∗i )}ij∈E(G)

)
.

Now let A = −εB
[
∂
∂yF (BTφ∗)

]
BT and consider the linear system

δφ̇ = Aδφ.

Lyapunov’s indirect method [30] asserts:

• If there exists an eigenvalue λ of A with Reλ > 0 then the equilibrium is unstable.

Although it is possible to numerically calculate the eigenvalues of A given φ∗, here we use the special structure

of A to provide a sufficient condition for instability that has nice graph theoretical interpretations.
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Theorem 2 (Negative cut instability condition) Given an equilibrium φ∗ of the system (9), with connectivity

graph G and fij satisfying Assumption 1. If there exists a cut C(P ) such that the sum

∑
ij∈C(P )

f ′ij(φ
∗
j − φ∗i ) < 0, (10)

the equilibrium φ∗ is unstable.

Proof: Let D := ∂
∂yF (BTφ∗). In order to apply the instability criterion of Lyapunov’s indirect method, we

need to find at least one eigenvalue of BDBT with Reλ < 0. If such eigenvalue existed, it would imply the

existence of an eigenvalue of A with ReλA > 0, and therefore the instability of φ∗.

Since BDBT is symmetric (recall D is diagonal), it is enough to find some direction x ∈ V(G) such that

xTBDBTx < 0, since that would imply the existence of such negative eigenvalue. Also, since we know that the

range of BT is the cut space C(G), for any y ∈ C(G) there exists an x ∈ V(G) such that y = BTx.

Now let y = cP for some partition P = (V −, V +) as defined in (IV-A1) and let xP ∈ V(G) such that

cP = BTxP . Note that

∑
ij∈C(P )

f ′ij(φ
∗
j − φ∗i ) = cTPDcP = xTPBDB

TxP .

Therefore, when condition (10) holds, there exists some xP ∈ V(G) with xTPBDB
TxP < 0, which implies

that A = −εBDBT has at least one eigenvalue whose real part is positive.

Remark 3 • Theorem 2 provides a sufficient condition for instability; it is not clear what happens when

(10) does not hold. However, it gives a graph-theoretical interpretation that can be used to provide stability

results for general topologies. That is, if the minimum cut cost is negative, the equilibrium is unstable.

• There are several fast algorithms like [31] to find the minimum cut cost of an arbitrary graph that can be

used. Thus this Theorem can also provide a computational instability check, alternative to calculating all

the eigenvalues of A, which can be computationally demanding for large networks.

When (10) is specialized to P = ({i}, V (G)\{i}) and fij(θ) = sin(θ), it reduces to the instability condition

in Lemma 2.3 of [19]; i.e., ∑
j∈Ni

cos(φ∗j − φ∗i ) < 0. (11)

However, (10) has a broader applicability spectrum as the following example shows.
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Example 4 Consider a six oscillators network as in Figure 7, where each node is linked with its four closest

neighbors and fij(θ) = sin(θ). Then, by symmetry, it is easy to verify that

φ∗ =

[
0,
π

3
,
2π

3
, π,

4π

3
,
5π

3

]T
(12)

is an equilibrium of (8).

Fig. 7. The network of six oscillators (Example 4)

We first study the stability of φ∗ using (11) as in [19]. By substituting (12) in cos(φ∗j − φ∗i ) ∀ij ∈ E(G) we

find that the edge weights can only take two values:

cos(φ∗j − φ∗i ) =


cos(π3 ) = 1

2 , if j = i± 1 mod 6

cos(2π3 ) = −1
2 , if j = i± 2 mod 6

Then, since any cut that isolates one node from the rest (like C1 = C({1}, V (G)\{1}) in Figure 7) will always

have two edges of each type, their sum is zero. Therefore, (11) cannot be used to determine stability.

If we now use Theorem 2 instead, we are allowed to explore a wider variety of cuts that can potentially have

smaller costs. In fact, if instead of C1 we sum over C2 = C({1, 2, 6}, {3, 4, 5}), we obtain,

∑
ij∈C2

cos(φ∗j − φ∗i ) = −1 < 0,

which implies that φ∗ is unstable.

Figure 8 verifies the equilibrium instability. By starting with an initial condition φ0 = φ∗ + δφ close to the

equilibrium φ∗, we can see how the system slowly starts to move away from φ∗ towards a stable equilibrium set.
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t

φi

π

Fig. 8. Unstable equilibrium φ∗. Initial condition φ0 = φ∗+δφ

2) Almost Global Stability: Condition (10) also provides insight on which class of coupling functions can

potentially give us almost global convergence to the in-phase equilibrium set E1N . If it is possible to find some

fij with f ′ij(0) > 0, and that for any non-in-phase equilibrium φ∗, there is a cut C with
∑

ij∈C f
′
ij(φ

∗
j − φ∗i ) < 0,

then the in-phase equilibrium set will be almost globally stable [13]. The main difficulty is that for general fij

and arbitrary network G, it is not easy to locate every phase-locked equilibria and thus, it is not simple to know

in what region of the domain of fij the slope should be negative.

We now concentrate on the one-parameter family of functions Fb, with b ∈ (0, π) defined by:

• Assumption 1

• f ′ij(θ; b) > 0, ∀θ ∈ (0, b) ∪ (2π − b, 2π), and

• f ′ij(θ; b) < 0, ∀θ ∈ (b, 2π − b).

See Figure 3 for an illustration with b = 3π
4 . Also note that this definition implies that if fij(θ; b) ∈ Fb, the

coupling is attractive and fij(θ; b) > 0 ∀θ ∈ (0, π). This last property will be used later.

In order to obtain almost global stability we need b to be small. However, since the equilibria position is not

known a priori, it is not clear how small b should be or if there is any b > 0 such that all nontrivial equilibria

are unstable. We therefore first need to estimate the region of the state space that contains every non-trivial

phase-locked solution.

Let I be a compact connected subset of S1 and let l(I) be its length, e.g., if I = S1 then l(I) = 2π. For any

S ⊂ V (G) and φ ∈ T N , define I∗(φ, S) as the smallest interval I such that φi ∈ I ∀i ∈ S, i.e.,

I∗(φ, S) = argmin
I:φi∈I , ∀i∈S

l(I).

Since S is finite and I is compact, I∗ is always well defined. The extremes of I∗ represent the two phases of S
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that are farthest away. Therefore, we can use I∗ to define the separation width of the elements of S within S1 as

d(φ, S) = l(I∗(φ, S)).

Direct application Proposition 2.6 of [16] gives the following Lemma:

Lemma 3 Let fij(·; b) ∈ Fb ∀ij ∈ E(G) and G be connected. If φ∗ is an equilibrium point of (9) and

d(φ∗, V (G)) < π, then it must be the case that φ∗ is an in-phase equilibrium, i.e. φ∗ = λ1N for λ ∈ R.

Proof: Suppose φ∗ is a non-in-phase equilibrium with d(φ∗, V (G)) < π. Then, all the phases are strictly

contained in a half circle and for the oscillator with smallest phase i0, all the phase differences (φ∗j−φ∗i0) ∈ (0, π).

However, since fij(·; b) ∈ Fb implies fij(θ; b) > 0 ∀θ ∈ (0, π), φ̇∗i0 =
∑

j∈Ni0
fij(φj − φi0) 6= 0. Therefore, φ∗

cannot be an equilibrium which is a contradiction.

In other words, there is no equilibria, other than the in-phase one, with all the phases within any given half unit

circle. We are now ready to establish a bound on the value of b that guarantees the instability of the non-in-phase

equilibria.

Lemma 4 Consider fij(·; b) ∈ Fb ∀ij ∈ E(G) and arbitrary connected graph G. Then for any b < π
N−1 and

non-in-phase equilibrium φ∗, there is a cut C with

f ′ij(φ
∗
j − φ∗i ; b) < 0, ∀ij ∈ C

Proof: Suppose there is a non-in-phase equilibrium φ∗ for which no such cut C exists. Let V −0 = {i0} and

V +
0 = V (G)\{i0} be a partition of V (G) for some arbitrary node i0.

Since such C does not exists, there exists some edge i0j1 ∈ C(V −0 , V
+
0 ), with j1 ∈ V +

0 , such that f ′i0j1(φ
∗
j1
−

φ∗i0 ; b) ≥ 0. Move j1 from V +
0 to V −0 and define V −1 := V −0 ∪{j1} and V +

1 := V +
0 \{j1}. Now since f ′i0j1(φ

∗
j1
−

φ∗i0 ; b) ≥ 0, then

d(φ∗, V −1 ) ≤ b.

In other words, both phases should be within a distance smaller than b.

At the kth iteration, given V −k−1, V +
k−1, again we can find some ik−1 ∈ V −k−1, jk ∈ V +

k−1 such that ik−1jk ∈

C(V −k−1, V
+
k−1) and f ′ik−1jk

(φ∗jk − φ∗ik−1
; b) ≥ 0. Also, since at each step d(φ∗, {ik−1, jk}) ≤ b,

d(φ∗, V −k ) ≤ b+ d(φ∗, V −k−1).
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Solving the recursion we get:

d(φ∗, V −k ) ≤ kb.

Then, after N − 1 iterations we have V −N−1 = V (G) and d(φ∗, V (G)) < (N − 1)b. Therefore, since b < π
N−1 ,

we obtain

d(φ∗, V (G)) < (N − 1)
π

N − 1
= π.

Then, by Lemma 3 φ∗ must be an in-phase equilibrium, which is a contradiction, since we supposed φ∗ not to be

in-phase. Therefore, for any non-in-phase φ∗ and b < π
N−1 , we can always find a cut C with fij(φ∗j −φ∗i ; b) < 0,

∀ij ∈ C.

Corollary 5 Consider fij(θ; b) ∈ Fb and an arbitrary connected graph G. If b < π
N−1 , then any non-in-phase

equilibrium φ∗ is unstable.

We now have all the needed elements to prove the following theorem.

Theorem 6 (Almost global stability) Consider fij(θ; b) ∈ Fb and an arbitrary connected graph G. Then, if

b < π
N−1 , the in-phase equilibrium set E1N is almost globally asymptotically stable.

Proof: By Proposition 1, from every initial condition the system (9) converges to the set of equilibria E.

Additionally, since b ≤ π
N−1 , by Corollary 5 any non-in-phase equilibrium φ∗ is unstable. So the only possible

stable solutions are such BTφ∗ = 0. Since G is connected, this only holds when φ∗ = λ1N which is always

some in-phase equilibrium. Therefore, for almost every initial condition, the system (8) converges to the set of

in-phase equilibria E1N and thus this set is almost globally asymptotically stable.

C. Complete Graph Topology with a Class of Coupling Functions

In this subsection we investigate how conservative the value of b found in Section IV-B2 is for the complete

graph topology. We are motivated by the results of [19] where it is shown that f(θ) = sin(θ) (b = π
2 ) with

complete graph topology ensure almost global synchronization.

Since for general f it is not easy to characterize all the possible equilibria of the system, we study the stability

of the equilibria that appear due to the equivalence of (9) with respect to the action group SN × T 1, where SN

is the group of permutations of the N coordinates and T 1 = [0, 2π) represents the group action of phase shift

of all the coordinates, i.e. the action of δ ∈ T 1 is φi 7→ φi + δ ∀i. We refer the readers to [12] and [16] for a

detailed study of the effect of this property.
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δ1

δ2

k0

k1

k2

m=4
km=8

Fig. 9. Equilibria with isotropy (Sk0 ×Sk1 ×Sk2)
4 oZ4 (left) and (Sk)

8 oZ8 (right)

These equilibria are characterized by the isotropy subgroups Γ of SN×T 1 that keeps them fixed, i.e., γφ∗ = φ∗

∀γ ∈ Γ. In [12] it was shown that this isotropy subgroup takes the form of

(Sk0 × Sk1 × · · · × SklB−1
)m o Zm

where ki and m are positive integers such that (k0 +k1 + · · ·+klB−1)m = N , Sj is the permutation subgroup of

SN of j-many coordinates and Zm is the cyclic group with action φi 7→ φi + 2π
m . The semiproduct o represents

the fact that Zm does not commute with the other subgroups.

In other words, each equilibria with isotropy (Sk0 × Sk1 × · · · × SklB−1
)m o Zm is conformed by lB shifted

constellations Cl (l ∈ {0, 1, . . . lB − 1}) of m evenly distributed blocks, with kl oscillators per block. We use δl

to denote the phase shift between constellation C0 and Cl. See Figure 9 for examples these types of equilibria.

Here we will show that under mild assumptions on f and for b = π
2 most of the equilibria found with these

characteristics are unstable. We first study all the equilibria with m even. In this case there is a special property,

shown in the following lemma, that can be easily exploited.

Lemma 7 Given f ∈ Fπ

2
such that f is even around π

2 , i.e. f(θ − π
2 ) = f(−θ − π

2 ), then for m even the sum

g(δ) =

m−1∑
j=0

f(
2π

m
j + δ) = 0, ∀δ ∈

[
0,

2π

m

]
.
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Proof: The proof of this lemma is a straight consequence of the properties of f as the next derivation shows.

gm(δ) =

m−1∑
j=0

f(
2π

m
j + δ) =

m/2−1∑
j=0

f(
2π

m
j + δ) + f(π +

2π

m
j + δ)

=

m/2−1∑
j=0

f(
2π

m
j + δ) + f((

3π

2
+

2π

m
j + δ)− π

2
)

=

m/2−1∑
j=0

f(
2π

m
j + δ) + f(−(

2π

m
j + δ)) =

m/2−1∑
j=0

f(
2π

m
j + δ)− f(

2π

m
j + δ) = 0

where the third step comes from f being even around π/2 and 2π-periodic, and the fourth from f being odd.

Lemma 7 is the key to prove the following instability theorem. It essentially states that the aggregate effect of

one constellation Cl on any oscillator j ∈ V (G)\Cl is zero when m is even, and therefore any perturbation that

maintains Cl has null effect on j.

Fig. 10. Cut of Theorem 8, the red block represents one possible set V0

Theorem 8 (Instability for even m ) Given an equilibrium φ∗ with isotropy (Sk1 × Sk2 × · · · × SklB )m o Zm

and f ∈ Fπ

2
even around π

2 . Then, if m is even, φ∗ is unstable.

Proof: We will show the instability of φ∗ by finding a cut of the network satisfying (10). Let V0 ⊂ V (G)

be the set of nodes within one of the blocks of the constellation C0 and consider the partition induced by V0,

i.e. P = (V0, V (G)\V0). Due to the structure of φ∗, (10) becomes

∑
ij∈C(P )

f ′(φ∗j − φ∗i ) = −k1f ′(0) +

lB∑
l=1

klg
′
m(δl),

where g′m(δ) is the derivative of gm as defined in Lemma 7 and δl is the phase shift between the C0 and Cl.
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Finally, since by Lemma 7 gm(δ) ≡ 0 ∀δ then it follows that g′m(δ) ≡ 0 and

∑
ij∈C(P )

f ′ij(φ
∗
j − φ∗i ) = −k1f ′(0) < 0.

Therefore, by Theorem 2, φ∗ is unstable.

The natural question that arises is whether similar results can be obtained for m odd. The main difficulty in

this case is that Lemma 7 does not hold since we no longer evaluate f at points with phase difference equal

to π such that they cancel each other. Therefore, an extra monotonicity condition needs to be added in order to

partially answer this question. These conditions and their effects are summarized in the following Lemmas.

Lemma 9 (Monotonicity) Given f ∈ Fπ

2
such that f is strictly concave for θ ∈ [0, π], then

f ′(θ)− f ′(θ − φ) < 0, 0 ≤ θ − φ < θ ≤ π (13)

f ′(θ)− f ′(θ + φ) < 0, −π ≤ θ < θ + φ ≤ 0 (14)

Proof: The proof is a direct consequence of the strict concavity of f . Since f(θ) is strictly concave then

basic convex analysis shows that f ′(θ) is strictly decreasing within [0, π]. Therefore, the inequality (13) follows

directly from the fact that θ ∈ [0, π],θ− φ ∈ [0, π] and θ− φ < θ. To show (14) it is enough to notice that since

f is odd ( f ∈ Fπ

2
), f is strictly convex in [π, 2π]. The rest of the proof is analogous to (13).

Lemma 10 (f ′ Concavity) Given f ∈ Fπ

2
such that f ′ is strictly concave for θ ∈ [−π

2 ,
π
2 ]. Then for all m ≥ 4,

f ′( πm) ≥ 1
2f
′(0).

Proof: Since f ′(θ) is concave for θ ∈ [−π, π] then it follows

f ′(
π

m
) = f ′(λm0 + (1− λm)

π

2
) > λmf

′(0) + (1− λm)f ′(
π

2
) > λmf

′(0)

where λm = m−2
m . Thus, for m ≥ 4, λm ≥ 1

2 and

f ′(
π

m
) >

1

2
f ′(0)

as desired.

Now we show the instability of any equilibria with isotropy (Sk1 × Sk2 × · · · × SklB )m o Zm for m odd and

greater or equal to 7.

Theorem 11 (Instability for m ≥ 7 and odd) Suppose f ∈ Fπ

2
with f concave in [0, π] and f ′ concave in
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Fig. 11. Cut used in Theorem 11. The dots in red represent all the oscillators of some maximal set S with d(φ∗, S) < 4π
m

[−π
2 ,

π
2 ], then for all m = 2k + 1 with k ≥ 3 the equilibria φ∗s with isotropy (Sk1 × Sk2 × · · · × SklB )m o Zm

are unstable.

Proof: As in Theorem 8 we will use our cut condition to show the instability of φ∗. Thus, we define a

partition P = (S, V (G)\S) of V (G) by taking S to be a maximal subset of V (G) such that d(φ, S) < 4π
m ,

see Figure 11 for an illustration of P . Notice that any of these partitions will include all the oscillators of two

consecutive blocks of every constellation.

Instead of evaluating the total sum of the weights in the cut we will show that the sum of edge weights of

the links connecting the nodes of one constellation in S with the nodes of a possibly different constellation in

V (G)\S is negative. In other words, we will focus on showing

∑
ij∈Kl1l2

f ′(φ∗j − φ∗i ) < 0 (15)

where Kl1l2 = {ij : i ∈ Cl1 ∩ S, j ∈ Cl2 ∩ V (G)\S}.

Given any subset of integers J , we define

gJm(δ) = gm(δ)−
∑
j∈J

f(
2π

m
j + δ).

Then, we can rewrite (15) as

∑
ij∈Kl1l2

f ′(φ∗j − φ∗i ) = (g{0,1}m )′(δl1l2) + (g{−1,0}m )′(δl1l2)

= 2g′m(δl1l2)− f ′(δl1l2 +
2π

m
)− 2f ′(δl1l2)− f ′(δl1l2 −

2π

m
) (16)

where δl1l2 ∈ [0, 2πm ] is the phase shift between the two constellations. Then, if we can show that for all δ ∈ [0, 2πm ]

(16) is less than zero then for any values of l1 and l2 we will have (15) satisfied.
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Since f is odd and even around π
2 , f ′ is even and odd around π

2 and g′m(δ) can be rewritten as

g′m(δ) = f ′(δ)

+
∑

1≤|j|≤b k
2
c

{
f ′(δ +

2π

m
j)− f ′(δ − sgn(j)

π

m
+

2π

m
j)

}

−
[
f ′(δ +

π

m
k) + f ′(δ − π

m
k)
]
1[k odd]

where 1[k odd] is the indicator function of the event [k odd], the sum is over all the integers j with 1 ≤ |j| ≤ bk2c

and k = m−1
2

The last term only appears when k is odd and in fact it is easy to show that it is always negative as the

following calculation shows:

− f ′(δ +
π

m
k)− f ′(δ − π

m
k) = −f ′( π

m
k + δ)− f ′( π

m
k − δ) = −f ′(π

2
− π

2m
+ δ)− f ′(π

2
− π

2m
− δ)

= f ′(
π

2
− δ +

π

2m
)− f ′(π

2
− δ − π

2m
) = f ′(θ)− f ′(θ − φ) < 0

where in step one we used the fact of f ′ being even, in step two we used k = m−1
2 and in step three we use f ′

being odd around π
2 . The last step comes from substituting θ = π

2 − δ + π
2m , φ = π

m and apply Lemma 9, since

for m ≥ 7 we have 0 ≤ θ − φ < θ ≤ π.

Then it remains the show that the terms of the form f ′(δ + 2π
m j) − f ′(δ − sgn(j) πm + 2π

m j) are negative for

all j s.t. 1 ≤ |j| ≤ bk2c. This is indeed true when j is positive since for all δ ∈ [0, 2πm ] we get

0 ≤ δ − π

m
+

2π

m
j < δ +

2π

m
j ≤ π, for 1 ≤ j ≤ bk

2
c

and thus we can apply again Lemma 9.

When j is negative there is one exception in which Lemma 9 cannot be used since

−π ≤ δ +
2π

m
j < δ +

2π

m
j +

π

m
≤ 0,∀δ ∈ [0,

2π

m
]

only holds for −bk2c ≤ j ≤ −2. Thus the term corresponding to j = −1 cannot be directly eliminated.

Then, by keeping only the terms of the sum with j = ±1, g′m is strictly upper bounded for all δ ∈ [0, 2πm ] by

g′m(δ) < f ′(δ) + f ′(δ − 2π
m )− f ′(δ − π

m) + f ′(δ + 2π
m )− f ′(δ + π

m) . (17)
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Now substituting (17) in (16) we get

∑
ij∈Kl1l2

f ′(φ∗j − φ∗i ) < f ′(δ − 2π

m
)− 2f ′(δ − π

m
) + f ′(δ +

2π

m
)− 2f ′(δ +

π

m
)

≤ f ′(δ − 2π

m
)− 2f ′(δ − π

m
)− f ′(δ +

π

m
) ≤ f ′(δ − 2π

m
)− 2f ′(δ − π

m
)

where in the last step we used the fact that for m ≥ 6 and δ ∈ [0, 2πm ], f ′(δ + π
m) ≥ 0.

Finally, since for δ ∈ [0, 2πm ] f ′(δ− 2π
m ) is strictly increasing and f ′(δ− π

m) achieves its minimum for δ ∈ {0, 2πm },

then

f ′(δ − 2π

m
)− 2f ′(δ − π

m
) ≤ f ′(0)− 2f ′(

π

m
) ≤ 0

where the last inequality follow from Lemma 10.

Therefore, for all m odd greater or equal to 7 we obtain

∑
ij∈Kl1l2

f ′(φ∗j − φ∗i ) < f ′(0)− 2f ′(
π

m
) ≤ 0

and since this result is independent on the indices l1, l2, then

∑
ij∈C(S,V (G)\S)

f ′(φ∗j − φ∗i ) =

lB∑
l1=1

lB∑
l2=1

∑
ij∈Kl1l2

f ′(φ∗j − φ∗i ) < 0

and φ∗ is unstable.

V. EFFECT OF DELAY

Once delay is introduced to the system of coupled oscillators, the problem becomes fundamentally harder. For

example, for pulse-coupled oscillators, the reception of a pulse no longer gives accurate information about the

relative phase difference ∆φij = φj − φi between the two interacting oscillators. Before, at the exact moment

when i received a pulse from j, φj was zero and the phase difference was estimated locally by i as ∆φij = −φi.

However, now when i receives the pulse, the difference becomes ∆φij = −φi − ψij . Therefore, the delay

propagation acts as an error introduced to the phase difference measurement and unless some information is

known about this error, it is not possible to predict the behavior. Moreover, as we will see later, slight change in

the distribution can produce nonintuitive behaviors. Even though it may not be satisfactory for some applications,

many existing works choose to ignore dela y. (see for e.g., [22], [18], [19], [26]). That is mainly for analytical

tractability.

In this section we study how delay affects the dynamics of a network of pulse-coupled oscillators. A new
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framework to study pulse-coupled oscillators with delay will be set up by constructing an equivalent non-delayed

system that has the same behavior as the original one in the continuum limit. We then further use this result to

show that heterogeneous delay can help reach synchronization, which is a bit counterintuitive and significantly

generalizes previous related studies [21], [32], [33]. We will assume complete graph to simplify notation and

exposition although the results can be extended for a boarder class of densely connected networks.

We first generalize the intuition from Example 3 in section III to a network of large numbers of oscillators.

This is a challenging task given the heterogeneous delay. We shall build on existing arguments such as mean

field approximation [25] and Lyapunov stability theory [19], [17] while looking at the problem from a different

perspective.

Consider the case where the coupling between oscillators is all to all and identical (Ni = N\{i}, ∀i ∈ N and

fij = f ∀i, j). And assume the phase lags ψij are randomly and independently chosen from the same distribution

with probability density g(ψ). By letting N → +∞ and ε→ 0 while keeping εN =: ε̄ a constant, (3) becomes

v(φ, t) := ω + ε̄

∫ π

−π

∫ +∞

0
f(σ − φ− ψ)g(ψ)ρ(σ, t)dψdσ, (18)

where ρ(φ, t) is a time-variant normalized phase distribution that keeps track of the fraction of oscillators with

phase φ at time t, and v(φ, t) is the velocity field that expresses the net force that the whole population applies to

a given oscillator with phase φ at time t. Since the number of oscillators is preserved at any time, the evolution

of ρ(φ, t) is governed by the continuity equation

∂ρ

∂t
+

∂

∂φ
(ρv) = 0 (19)

with the boundary conditions ρ(0, t) ≡ ρ(2π, t).

Equations (18)-(19) are not analytically solvable in general. Here we propose a new perspective that is inspired

by the following observation.

Theorem 12 Mean Field Approximation

Let ψij be independent and identically distributed random variables with probability density function g(ψ).

Then, there is a non-delayed system of the form

φ̇i = ω + ε
∑
j∈Ni

H(φj − φi), (20)
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where

H(θ) = f ∗ g(θ) =

∫ +∞

0
f(θ − ψ)g(ψ)dψ (21)

is the convolution between f and g such that (3) and (20) have the same continuum limit.

Proof: By the same reasoning of (18) it is easy to see that the limiting velocity field of (20) is

vH(φ, t) = ω + ε̄

∫ 2π

0
H(σ − φ)ρ(σ, t)dσ

= ω + ε̄

∫ 2π

0

(∫ +∞

0
f((σ − φ)− ψ)g(ψ)dψ

)
ρ(σ, t)dσ

= ω + ε̄

∫ 2π

0

∫ +∞

0
f(σ − φ− ψ)g(ψ)ρ(σ, t)dψdσ = v(φ, t)

where in the first and the third steps we used (21) and (18) respectively. Thus both systems produce the same

velocity field in the limit and therefore behave identically.

Remark 4 Although (20) is quite different from (3), Theorem 12 states that both systems behave exactly the

same in the continuum limit. Therefore, as N grows, (20) starts to become a good approximation of (3) and

therefore can be analyzed to understand the behavior of (3).
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Fig. 12. Effect of delay in coupling shape

Figure 12 shows how, as in the case of two oscillators, the underlying delay (in this case the delay distribution)

determines what type of coupling (attractive or repulsive) produces synchronization. The original function f

produces repulsive coupling, whereas the corresponding H is attractive. In fact, as we will soon see, the distribution

of delay not only can qualitatively affect the type of coupling but also can change the stability of certain phase-

locked limit cycles.

We now study two example to illustrate how this new approximation can provide significant information about

performance and stability of the original system. We also provide numerical simulations to verify our predictions.
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A. Kuramoto Model

We start by studying an example in the literature [34] to demonstrate how we can use the previous equivalent

non-delayed formulation to provide a better understanding of systems of pulse-coupled oscillators with delay.

When f(θ) = K sin(θ), H(θ) can be easily calculated:

H(θ) =

∫ +∞

0
K sin(θ − ψ)g(ψ)dψ = K

∫ +∞

0
=
[
ei(θ−ψ)g(ψ)

]
dψ

= K=
[
eiθ
∫ +∞

0
e−iψg(ψ)dψ

]
= K=

[
eiθCe−iξ

]
= KC sin(θ − ξ)

where = is the imaginary part of a complex number, i.e. =[a+ ib] = b. The values of C > 0 and ξ are calculated

using the identity

Ceiξ =

∫ +∞

0
eiψg(ψ)dψ.

This complex number, usually called “order parameter”, provides a measure of how the phase-lags are distributed

within the unit circle. It can also be interpreted as the center of mass of the lags ψij’s when they are thought of

as points (eiψij ) within the unit circle S1. Thus, when C ≈ 1, the ψij’s are mostly concentrated around ξ. When

C ≈ 0, the delay is distributed such that
∑

ij e
iψij ≈ 0.

In this example, (20) becomes

φ̇i = ω + εKC
∑
j∈Ni

sin(φj − φi − ξ). (22)

Here we see how the distribution of g(ψ) has a direct effect on the dynamics. For example, when the delays

are heterogeneous enough such that C ≈ 0, the coupling term disappears and therefore makes synchronization

impossible. A complete study of the system under the context of superconducting Josephson arrays was performed

[34] for the complete graph topology. There the authors characterized the condition for in-phase synchronization

in terms of K and Ceiξ. More precisely, when KCeiξ is on the right half of the plane (KC cos(ξ) > 0), the

system almost always synchronizes. However, when KCeiξ is on the left half of the plane (KC cos(ξ) < 0), the

system moves towards an incoherent state where all of the oscillators’ phases spread around the unit circle such

that its order parameter, i.e. 1
N

∑N
l=1 e

iφl , becomes zero.

Another way to interpret the parameter ξ is as if every signal were delayed by the same amount. Then the

previous conditions are akin to the ones discussed for two oscillator with delay, where we showed that if ξ = π

(cos(ξ) = −1) then K < 0 (repulsive coupling) produces synchronization, whereas when ξ = 0 (cos(ξ) = 1),

K > 0 is the one that synchronizes.
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Fig. 13. Delay distributions and their order parameter Ceiξ

We now provide simulation results to illustrate how (22) becomes a good approximation of the original system

when N is large enough. We simulate the original repulsive (K < 0) sine-coupled system with heterogeneous

delays and its corresponding approximation (22). Two different delay distributions, depicted in Figure 13, were

selected such that their corresponding order parameter lie in different half-planes.

The same simulation is repeated for N = 5, 10, 50. Figure 14 shows that when N is small, the phases’ order

parameter of the original system (in red/blue) draw a trajectory which is completely different with respect to its

approximation (in green). However, as N grows, in both cases the trajectories become closer and closer. Since

K < 0, the trajectory of the system with wider distribution (C cos ξ < 0) drives the order parameter towards the

boundary of the circle, i.e., heterogeneous delay leads to homogeneous phase.

Fig. 14. Repulsive sine coupling with heterogeneous delays

B. Effect of Heterogeneity

We now explain a more subtle effect that heterogeneity can produce. Consider the system in (20) where H

after the convolution falls under Assumption 1. Then, from Section IV, all of the oscillators eventually end up

running at the same speed ω with fixed phase difference such that the sum
∑

i∈Ni H(φj − φi) cancels ∀i.
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Moreover, we can apply Theorem 2 to assess the stability of these orbits. Therefore, if we can find a cut K

of the network such that
∑

ij∈KH
′(φ∗j − φ∗i ) < 0, the phase-locked solution will be unstable.

Although this condition is for non-delayed phase-coupled oscillators, the result of this section allows us to

translate it for systems with delay. Since H is the convolution of the coupling function f and the delay distribution

function g, we can obtain H ′(φ∗j−φ∗i ) < 0, even when f ′(φ∗j−φ∗i ) > 0. This usually occurs when the convolution

widens the region with a negative slope of H . See Figure 12 for an illustration of this phenomenon.
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Fig. 15. Pulse-coupled oscillators with delay: Stable equilibrium
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Fig. 16. Pulse-coupled oscillators with delay: Unstable equilibrium
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Figures 15 and 16 show two simulation setups of 45 oscillators pulse-coupled all to all. The initial state is

close to a phase locked configuration formed of three equidistant clusters of 15 oscillators each. The shape of

the coupling function f and the phase lags distributions are shown in part a; while f is maintained unchanged

between both simulations, the distribution g does change. Thus, the corresponding H = f ∗ g changes as it can

be seen in part b; the blue, red, and green dots correspond to the speed change induced in an oscillator within the

blue cluster by oscillators of each cluster. Since all clusters have the same number of oscillators, the net effect

is zero. In part c the time evolution of oscillators’ phases relative to the phase of a blue cluster oscillator are

shown. Although the initial conditions are exactly the same, the wider delay distribution on Figure 16 produces

negative slope on the red and gre en points of part b, which destabilizes the clusters and drives oscillators toward

in-phase synchrony.

Finally, we simulate the same scenario as in Figures 15 and 16 but now changing N and the standard deviation,

i.e. the delay distribution width. Figure 17 shows the computation of the synchronization probability vs. standard

deviation. The dashed line denotes the minimum value that destabilizes the equivalent system. As N grows, the

distribution shape becomes closer to a step, which is the expected shape in the limit. It is quite surprising that

as soon as the equilibrium is within the region of H with negative slope, the equilibrium becomes unstable as

the theory predicts.

Fig. 17. Pulse-coupled oscillators with delay: Synchronization probability

VI. CONCLUSION

This paper analyzes the dynamics of identical weakly coupled oscillators while relaxing several classical

assumptions on coupling, delay and topology. Our results provide global synchronization guarantee for a wide
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rage of scenarios. There are many directions that can be taken to further this study. For example, for different

topologies, to guarantee global in-phase synchronization, how does the requirement on coupling functions change?

Another specific question is to complete the proof in Section IV-C for the cases when m = 1, 3, 5. Finally, it

will be of great interest if we can apply results and techniques in this paper to a wide range of applications such

as transient stability analysis of power networks and clock synchronization of computer networks.
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