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Abstract— The development of open electricity markets has
led to a decoupling between the market clearing procedure
that defines the power dispatch and the security analysis that
enforces predefined stability margins. This gap results in market
inefficiencies introduced by corrections to the market solution to
accommodate stability requirements. In this paper we present
an optimal power flow formulation that aims to close this gap.
First, we show that the pseudospectral abscissa can be used
as a unifying stability measure to characterize both poorly
damped oscillations and voltage stability margins. This leads
to two novel optimization problems that can find operation
points which minimize oscillations or maximize voltage stability
margins, and make apparent the implicit tradeoff between
these two stability requirements. Finally, we combine these
optimization problems to generate a dynamics-aware optimal
power flow formulation that provides voltage as well as small
signal stability guarantees.

I. INTRODUCTION

The optimal power flow (OPF) is the optimization problem
used for finding the best power scheduling of a network
that minimizes an objective function (e.g. market welfare,
losses, generation cost and voltage magnitudes) subject to
physical and operational constraints. It has a long history
in the power systems community dating back to at least
1962 with the seminal work of Carpentier [1]. It has since
become a fundamental tool for defining prices and arbitrating
electricity markets, and many different algorithms have been
proposed to solve OPF [2], [3].

On the other hand, stability of the power network has
been one of the major concerns of every utility company.
When a blackout occurs, the resulting economic impact can
cost between several hundred million dollars and a few
billion dollars [4]. Thus, utility operators are constantly
monitoring the network state in order to avoid different types
of instabilities that a power system might experience. These
include, for instance, voltage collapse/instability [5], small
signal oscillations/instability [6] and transient instability [7].

Different methods have been developed to assess and
prevent each individual stability problem. Voltage stability,
for example, can be analyzed using screening and rank-
ing methods [8] and continuation methods that investigate
the available transfer capability of the current operating
point [9]. Small signal oscillations, on the other hand, are
locally damped using Power System Stabilizers (PSS) in the
exciter control loop [6] and globally damped using either
power electronics, such as Flexible AC Transmission System
(FACTS) devices [10], or using Phasor Measurement Unit
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(PMU) information in the PSS loop [11]. Finally, transient
stability is analyzed using time domain integration [12] or
the controlling unstable equilibrium point methodology [13].

Even though these methods have diverse objectives and
therefore employ different techniques, they all require as
input an initial operating point, which is usually obtained by
solving certain OPF problem. While this may not be a big
issue for transient stability as it also depends on the specific
fault in consideration, the procedure used to clear it, and
the time needed to recover from it (fault clearing time) [14],
it is certainly critical in voltage stability and small signal
oscillation studies because the voltage collapse margin and
stability of the operating point are directly influenced by the
scheduling choice (solution of OPF).

Therefore, without any additional considerations the
scheduling obtained by the OPF may produce fragile or
even unstable solutions. This is prevented nowadays in
many utility companies by performing a day ahead detailed
stability analysis based on historic records and predictions
which is translated into line flow constraints. However,
these additional constraints does not have a clear dynamical
meaning that can be used to indicate how robust is the current
solution and in some scenarios are not enough. It is common
to introduce corrections on the scheduling online to prevent
instabilities which can generate market inefficiencies.

In other words, the existing methodology is unable to
contemplate the fact that these two problems are intrinsically
coupled. This problem has been identified and studied over
the last 15 years and several methods have been proposed to
include voltage stability constraints in the OPF problem [16],
[17]. However, adding small signal stability constraints has
been a daunting task because it usually requires constraining
or computing sensitivity of several (if not all) eigenvalues of
the system [15]. Furthermore, these procedures can some-
times produce undesired outcomes since there is a tradeoff
between asymptotic rate of convergence (max<[λi]) and
transient amplitude.

In this paper we overcome this problem by using a novel
performance metric known as pseudospectral abscissa that
can balance transient amplitude and asymptotic convergence
rate [18]. Using this metric, we propose an optimization
framework that not only imposes voltage and small signal
stability constraints on the OPF without explicitly computing
and constraining the eigenvalues of the system, but also finds
the performance limits of the system.

The rest of this paper is organized as follows. In Section II
we describe the dynamics of a power network, the different
stability issues it can experience and the OPF problem. We
then bring in the pseudospectral abscissa in Section III and



show how it can be used to measure and optimize voltage
stability margins, oscillations and robustness. This naturally
leads to our Dynamics-aware OPF formulation. We illustrate
several properties of our new optimization framework using
two different test cases, including the widely used IEEE 39-
bus New England power grid test case in Section IV. We
conclude in Section V.

II. BACKGROUND

We now proceed to describe two models commonly used
in the study of OPF and power systems dynamics: static and
dynamic models. Each has its specific use and the level of
detail depends on the problem in consideration.

A. Static Power Network Modeling

The static model of a power network defines the physical
relationship that the state at each bus must satisfy for the
system to be at equilibrium. In this model, the state is solely
represented by the complex voltage Vk = |Vk|eiθk at each
bus k ∈ N , which in order to be at equilibrium, must satisfy
the flow conservation equations, also known as power flow
equations. These equations basically state that the surplus
(or deficit) in generation at a given bus should match the
outgoing (incoming) power flow to (from) the neighboring
buses and ground, i.e.

|Vk|2y∗kk +
∑
l∼k

Skl = PGk
+ iQGk

− (PDk
+ iQDk

). (1)

Here, PGk
+ iQGk

is the complex power generated, PDk
+

iQDk
is the complex power demanded at bus k, Skl =

Pkl + iQkl := Vk(Vk − Vl)
∗y∗kl is the complex line flow

from k to l, ykk is the bus shunt admittance and ykl is
the line admittance. Loads are usually modeled as constant
impedance (Z), constant current (I) or constant power (P).
When the loads are modeled by constant impedance or
constant current models, PDk

and QDk
are functions of the

voltage magnitude at the bus. A well-accepted model for
static loads is the ZIP model which is a convex combination
of the three, i.e.

PDk
= P0,k

(
a1,k

( |Vk|
V0,k

)2

+ a2,k

( |Vk|
V0,k

)
+ a3,k

)
(2a)

QDk
= Q0,k

(
b1,k

( |Vk|
V0,k

)2

+ b2,k

( |Vk|
V0,k

)
+ b3,k

)
(2b)

Since this model is sufficient to characterize the static
properties of the network, such as the existence of a sta-
tionary solution of the power flow equations (1), voltage
magnitudes |Vk|, line flows Pkl and Skl, and losses Pkl+Plk,
it is used for the computation of optimal power flow and the
study of voltage stability.

To simplify notation, we will use from now on xs :=
((|V |), (θ))T as the vector of the static network states, us :=
((PG), (QG))T as the vector of static control variables and
vs := ((P0), (a1), (a2), (a3), (Q0), (b1), (b2), (b3))T as the
vector of load parameters. Thus, the power flow equations
(1) can be compactly defined as F (xs, us, vs) = 0.

1) Optimal Power Flow: Let fk(Vk, PGk
, QGk

) denote
the cost function associated with bus k. In most cases, fk
depends solely on PGk

but it can be extended to more general
scenarios. Then, the optimal power flow can be formulated
as

OPF : minimize
xs,us

c(V, PG, QG) :=
∑
k∈N

fk(Vk, PGk
, QGk

)

(3)
subject to

F (xs, us, vs) = 0 (4a)

Pmin
k ≤ PGk

≤ Pmax
k , ∀k ∈ N (4b)

Qmin
k ≤ QGk

≤ Qmax
k , ∀k ∈ N (4c)

V min
k ≤ |Vk| ≤ V max

k , ∀k ∈ N (4d)
Pkl ≤ Pmax

kl , ∀(k, l) ∈ L (4e)
|Skl| ≤ Smax

kl , ∀(k, l) ∈ L (4f)

The list of methods to solve this problem is vast. Some
of the most commonly used are primal dual interior point
method [2] and newton method [19].

2) Voltage Stability: Voltage stability refers to the ability
of the system to preserve voltage magnitudes within its nom-
inal values and avoid voltage collapse. A voltage collapse
occurs when changes on us or vs make two solutions of
(4a) coalesce and disappear in a Saddle Node Bifurcation.
This is evidenced by the presence of a real eigenvalue of the
Jacobian matrix

J(xs, us, vs) = Dxs
F (xs, us, vs) (5)

on the imaginary axis.
It is important to notice that the OPF problem (3)-(4)

guarantees voltage stability since its solution satisfies the
power flow constraints (4a). However, the stability margins
may not be large and a small fluctuation on the demand can
thus produce a voltage collapse.

This has motivated the development of optimization-based
techniques that define some distance measure, compute the
smallest distance to voltage collapse (e.g. [20]) and improve
it [21]. These developments have led to a solid integration
of voltage stability measures as constraints or as part of the
objective function of the OPF problem [16], [17]. Yet, none
of them considers the effect of the outcome of these solutions
on the dynamics of the power system.

B. Dynamic Power Network Modeling

The dynamics of a power network is represented by a set
of differential algebraic equations (DAEs) [22]

ẋ = f(x, z, u, v) (6)
0 = g(x, z, u, v). (7)

where x and z are the slow and fast state variables respective-
bly, u are the control inputs, such as power generation, active
voltage regulators (AVR) set points, transformers taps, etc.,
and v are the exogenous parameters such as power demand.
Equation (6) represents the dynamics of the system devices
including generators, power electronics and controllers, and



(7) are the algebraic equations of the generators stators,
power electronics and network power flows.

Equations (6)-(7) form a more detailed model than the
static model (1)-(2) and include in (x, z), u and v, the values
of xs, us and vs, respectively. In fact, equation (4a) is a
subset of (6)-(7).

Remark 1: It is important to notice that when xs, us and
vs satisfy F (xs, us, vs) = 0, we can find x, z such that
f(x, z, u, v) = 0 and g(x, z, u, v) = 0. In fact, given xs,
us and vs there is a unique x, z whose phase and voltage
magnitude values are equal to xs. This will be used in later
sections to formulate our dynamics-aware OPF. Overall, the
level of detail in the dynamic model is essential when one
wants to study dynamic phenomena such as small signal
oscillations.

1) Small Signal Oscillations: Small signal oscillations
are the effect of a Hopf Bifurcation in which a stable
equilibrium point becomes unstable and a limit cycle appears,
or the effect of poorly damped modes of stable operating
points. These oscillations can be studied by linearizing the
system (6)-(7) around an equilibrium point (x∗, z∗, u∗, v)

ẋ = [Dxf ]x+ [Dzf ]z + [Duf ]u (8a)
0 = [Dxg]x+ [Dzg]z + [Dug]u (8b)

and assuming that Dzg(x∗, z∗, u∗, v) is nonsingular1 to
obtain reduced system

ẋ = Ax+Bu (9)

where A = Dxf −Dzf (Dzg)
−1
Dxg (10)

and B = Duf −Dzf (Dzg)
−1
Dug.

The presence of small signal oscillations is evidenced by
a complex conjugate pair of eigenvalues of A close to the
imaginary axis. As previously mentioned, small signal sta-
bility can usually be improved by designing controllers (e.g.
PSS and FACTS) such that in closed loop A has eigenvalues
with smaller damping ratios [6], [11]. However, none of these
solutions considers the fact that (10) depends on the solution
of the power scheduling (encoded in u∗) and that oscillations
can appear if the market solution moves the system towards
a more stressed condition. This generates the need for re-
dispatching procedures that correct the scheduling in order
to avoid small signal instabilities.

The current way of dealing with the above issue is
by either iteratively adding constraints to successive OPF
instances based on eigenvalues sensitivity information [15]
or solving an OPF instance using an interior point method
with a constraint on the real part <[λi] of every critical
eigenvalue [23]. Besides the computational complexity of
these methods (one of them has to solve several OPFs and
the others compute second order sensitivity of eigenvalues),
it is also important to notice that most of them essentially
use max<[λi] as a stability constraint to avoid Hopf Bifur-
cations, and disregard any other performance or robustness

1The nonsingularity of Dzg(x∗, z∗, u∗, v) is a standard assumption in
power system stability studies that is generally satisfied in the presence of
a slack bus.

metric in the optimization. The only exception is [15] which
successively adds approximate damping ratio constraints to
each OPF instance solved. Unfortunately neither solution
provides a satisfactory answer. On the one hand, using
max<[λi] may produce undesired effects because, as one
gets closer to a local minimum of the function the system
can exhibit large amplitude transients [18]. On the other
hand, adding damping constraints on the eigenvalues has
no effect on voltage stability, as a real eigenvalue can be
arbitrarily close to the imaginary axis without meeting any
damping ratio constraint. This difficulty directly motivates
us to formulate a dynamics-aware OPF in the next section.

III. DYNAMICS-AWARE OPTIMAL POWER FLOW

In this section we show that the use of pseudospectral ab-
scissa αε(A) provides a convenient framework that not only
balances transient amplitude and asymptotic convergence
rate, but also jointly guarantees voltage and small signal
stability. This subsequently leads to a new optimization
formulation that can jointly enforce both stability constraints
with a single performance metric.

Given ε ≥ 0 the pseudospectrum Λε of a matrix A is
defined as the set of eigenvalues of all matrices X ∈ Cn×n
satisfying ||X −A||2 ≤ ε where || · ||2 is the spectral norm.
With this notation, the pseudospectral abscissa is defined by

αε(A) = max{<[z] : z ∈ Λε(A)}.

When ε = 0, α0(A) reduces to the spectral abscissa which
is equivalent to the constraint in [23]. There are several
advantages on using pseudospectral abscissa instead, which
we now summarize:
• Unlike α0(A), αε(A) is locally Lipschitz with respect

to A and thus easier to numerically compute.
• Let β(A) be the shortest distance between A and

an unstable matrix X ∈ Cn×n, then the following
relationship follows:

αε(A) ≤ 0 ⇐⇒ β(A) ≥ ε ⇐⇒ H∞(A) ≤ 1

ε

Here, H∞(A) is the H∞ norm of the system [24], i.e.
H∞(A) = supω∈R σmax(H(jω)), where σmax(H(s))
is the maximum singular value of the transfer function
H(s) = (A− sI)−1.

• αε(A) captures several dynamic properties for different
values of ε. For ε = 0, αε(A) is the asymptotic rate. If
αε(A) = 0 then ε−1 = H∞(A) and when ε → +∞,
(αε(A)− ε) is the initial rate of decay.

We refer the reader to [25] for proofs of these claims.
With these nice properties, we now propose the following

optimization problems to study the performance limits of a
power network.

H∞ : minimize
ε≥0,x,z,u

h(ε)

subject to (4) (11a)
αε(A(x, z, u, v)) ≤ 0 (11b)



Remark 1 guarantees that by satisfying (4a) we can find
(x, z, u, v) that satisfies the equilibrium equations of (6)-(7)
and therefore we do not need (6)-(7) as constraints.

The function h(ε) is decreasing, which guarantees
that the optimal solution (ε∗, x∗, z∗, u∗) of H∞ has the
constraint (11b) met with equality and makes 1

ε∗ =
H∞(A(x∗, z∗, u∗, v)). Thus, this problem finds the optimal
configuration in terms of H∞(A(x, z, u, v)). Furthermore,
the solution of H∞ also guarantees voltage stability, since
(6)-(7) has a stable equilibrium, and ensures a robust stability
radius of ε∗. In this paper we will use h(ε) = −20 log10(ε),
which amounts to the maximum power gain in decibels (dB)
of the transfer function H(s) when αε(A(x, z, u, v)) = 0.

Alternatively, one could choose to sacrifice H∞ optimality
by minimizing αε(·) for fixed ε. That is,

Aε : minimize
x,z,u

αε(A(x, z, u, v))

(12)
subject to (4)

When ε = 0, Aε finds the optimal configuration u∗ that
has the fastest asymptotic rate. On the other hand, when
ε → +∞ the solution of the problem provides a u∗ that
optimizes the initial decay rate of a small perturbation [25].

This new formulation also unveils a fundamental tradeoff
between voltage stability and small signal stability of power
networks that has not been previously analyzed. Finding the
maximum distance to voltage collapse implies using α0(A)
in Aε. While the solution of this problem will be optimal
in terms of voltage stability margin, it can potentially have
transients with large amplitude [18]. On the other hand, if
one is interested in minimizing the H∞(A) using H∞, then
the required voltage stability margins might not be met. This
is illustrated in Section IV-A and discussed in Section IV-C.

The optimization problems H∞ and Aε conform a novel
framework that can be readily combined with the OPF.
They provide a unifying representation of several dynamical
properties within a one parameter family of functions αε(·).
This is very convenient as the operator can choose different
values of ε, depending on the different needs of the power
network in consideration.

This results in the following formulation for a Dynamics-
aware Optimal Power Flow problem.

Dyn-OPF : minimize
ε≥0,x,z,u

c(V, PG, QG) (13)

subject to (4)
h(ε) ≤ h∗ (14)

αε(A) = 0 (15)
αε̂(A) ≤ a∗ (16)

where ε̂ is a constant parameter.
The solution to Dyn-OPF will provide an operating

point that minimizes the generation cost and keeps a max-
imum power gain of 20 log10(H∞(A)) ≤ h∗. On the
other hand, it is possible to use (16) to provide additional

constraints on the system. For example, by setting ε̂ = 0,
(16) can be used to impose specific voltage stability margins.
Notice that since neither the OPF nor H∞ and Aε are
convex problems, all their solutions and the solution to Dyn-
OPF are local minima.

IV. TEST CASES

In this section we provide two examples to illustrate
the properties of the optimization framework presented in
Section III. The dynamic models of (6) and (10) as well
as the algebraic equations (4a) and (7) are computed using
the Power System Toolbox (PST) [26]. αε(A) is evaluated
using the Matlab code provided with [27] with a tolerance
of 1e−12. The gradients of αε(A) are computed numerically
and the Matlab Optimization Toolbox is used to compute the
local optimum. We call the fmincon subroutine with function
and constraint tolerance of 1e−6 for optimizations involving
αε(A) (H∞ , Dyn-OPF , Aε ) and with tolerance 1e− 7
for OPF . All the results presented in this section are in
base 100MVA.

The cost function c(V, PG, QG) used is the standard
quadratic cost function depending only on the active gen-
eration, i.e.

c(PG) =
∑
k∈N

c2kP
2
Gk

+ c1kPGk
+ c0k.

This framework is not limited to this specific c(V, PG, QG)
and can be easily extended to consider other objective
functions.

A. Two Area Test Case

This example illustrates properties and differences be-
tween the local minima of the optimization problems H∞,
Aε and OPF. We consider a 2 area power network with
13 buses and 4 generators with detailed 2-axis subtransient
generators, static exciters, power system stabilizers and 2
induction motors on the load buses 4 and 14.

The load profile as well as the parameters of the induction
motors were take from the file d2asbegp.m that comes
with the PST distribution. The generator dynamics parame-
ters are chosen homogeneously and listed in Table I.

Fig. 1: Two area 13-bus test case

Generators are provided with identical AC4a excitation
systems and PSSs. Figure 2 shows a block diagram of the
AC4a system, where Tr is the transducer time constant, Ka

and Ta are the voltage regulator gain and time constants,



Fig. 2: AC4a Excitation System

respectively, [Vimin
, Vimax

] are the input voltage saturation
limits, [Vrmin , Vrmax ] are the output voltage saturation limits
(we take Kc = 0 in Figure 2) and Tb and Tc are compensator
constants.

We use standard PSSs with washout filter and two lag
compensators with Laplace Transfer

HPSS
k (s) = κk

sTw,k
1 + sTw,k

1 + sTn1,k
1 + sTd1,k

1 + sTn2,k
1 + sTd2,k

with equal parameters κ = 1, Tw = 10, Tn1 = .05, Td1 =
.02, Tn2 = .08 and Td2 = .015. All time constants are in
seconds.

We solve OPF, H∞ and Aε with ε = 0. We assume equal
cost among the four generators with parameters c0 = 0 and
c1 = c2 = 1. The optimal power scheduling is illustrated in
Table III. Table IV shows the asymptotic rate of convergence
α0(A), minimum damping ratio ξ and maximum gain of the
system H∞(A) for the three optimization problems studied
in this test case, and Figure 3 shows the corresponding
critical eigenvalues.

Table IV also illustrates the tradeoff between asymptotic
rate of convergence and transient amplitude. If one tries to
maximize the voltage stability margin (Aε=0 ), he obtains
a poor damping ratio and high frequency gain H∞(A).
However, if one choose to reduce oscillations (H∞ ), the
voltage stability margin increases. This confirms our claim
suggesting that α0(A) should not be used as a performance
metric in order to avoid oscillations like in [23] as it can
potentially amplify them. This is somehow counterintuitive
since α0(A) does succeed in avoiding Hopf Bifurcations.

Additionally, H∞ clearly outperforms OPF in damping
the modes achieving a relative increment in the minimum
damping ratio of ξH∞

ξOPF
= 2.83, almost three times higher,

and a gain reduction HH∞ (A)
HOPF (A) = −2.37 dB. Thus, this

example also shows how the dynamic behavior of a power
network can be considerably improved by solely changing
the operating point. Figure 4 a stem graph of the system
modes (damping ratio vs frequency) for the different oper-
ating points computed.

B. New England Power Grid

We now consider the IEEE 39-bus New England power
grid with 10 detailed 2-axis generator models shown in
Figure 5. Generators 1 to 9 are equipped with AC4a ex-
citation system with parameters described also by Table II
and PSSs using the optimal configuration described in [6].
The dynamic data of the generators was obtained from [28].

TABLE I: Generator dynamics parameters for the two area
test case

Gen # xl (pu) ra (pu) xd (pu) x′d (pu)
1,2,3,4 0.022 0 0.2 0.033
x′′d(pu) T′do(sec) T′′do (sec) xq (pu) x′q (pu)

0.028 8 0.03 0.189 0.061
x′′q (pu) T′qo (sec) T′′qo (sec) H (sec) do = d1 (pu)

0.027 0.4 0.05 58.5 0

TABLE II: AC4a excitation system parameters

Gen # Tr (sec) Ka Ta (sec) Tb (sec)
1,2,3,4 .0145 200 .05 0
Tc (sec) Vimin

(pu) Vimax (pu) Vrmin (pu) Vrmax (pu)
0 -10 10 -4.53 5.64

TABLE III: Power Scheduling of two area 13-bus test case
for H∞ , OPF and Aε with ε = 0

Gen # H∞ OPF Aε

PG QG PG QG PG QG

1 6.64 1.04 4.90 0.86 5.86 2.33
2 7.81 2.12 5.01 0.02 5.69 1.65
3 3.59 -1.66 4.89 0.87 5.32 0.72
4 2.00 1.23 5.01 -1.13 3.11 1.51

TABLE IV: Dynamic performance metrics of different op-
erating solutions

H∞ OPF Aε=0

α0(A) -0.100238 -0.100331 -0.100598
ξ(A) 0.1076 0.0571 0.0108

H∞(A) (dB) 38.23 40.60 55.75
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Fig. 3: Eigenvalues of the two area test system in Firgure
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horizontal axis θ defines the damping ratio (ξ = cos(θ)) .
Only the eigenvalues closer to the imaginary axis are shown.
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We select generator 10 as infinite bus in order to eliminate
the zero eigenvalue of the system.

Fig. 5: One line diagram of New England 39-bus system

In order to illustrate a stressed state of the network, we
define two different generation cost values. Generators 1, 8-
10 use parameters c2 = 0.01, c1 = 3.0 and c0 = 0.0, and
generators 2-7 use c2 = 0.01, c1 = 0.3 and c0 = 0.0. This
creates a power transfer from area 2 to area 1 of Figure 5
through lines (15.17), (3, 4) and (9, 39) and thus brings the
system closer to its stability boundary.

TABLE V: Power Scheduling of OPF , H∞ and Dyn-
OPF with h∗ = 32.398 and a∗ = 0

Gen # OPF H∞ Dyn-OPF
PG QG PG QG PG QG

1 0.00 1.64 1.97 2.19 10.75 1.84
2 7.75 4.77 10.93 5.01 10.98 4.93
3 7.53 6.78 4.64 5.75 5.47 5.72
4 9.55 5.26 2.40 3.37 2.00 3.38
5 9.09 3.48 10.98 3.16 10.99 3.12
6 10.53 5.33 0.18 2.32 1.34 2.64
7 7.73 2.42 0.71 0.45 8.92 1.63
8 0.00 1.82 11.00 1.56 0.94 1.82
9 0.66 1.09 8.61 0.75 0.01 0.76

10 9.95 2.89 11.00 2.72 11.00 2.29

We first solve the OPF and H∞ problems with voltage
constraints limits of [0.9, 1.1] (pu) for every load bus and
[0.95, 1.05] (pu) for every generator bus. Generation limits
are set homogeneously to Pmax

Gk
= 11, Pmin

Gk
= 0, Qmax

Gk
= 8

and Qmin
Gk

= −5. All flow and thermal constraints are made
non-binding. The solution of H∞ gives a value of h(ε∗) =
32.392 dB while for the optimum of OPF h(ε∗) = 32.808
dB. The relative damping ratio gain is ξH∞

ξOPF
= 2.71 which

indicates a significant increment on the system damping.
However, this damping improvement implies an increase

of the generation cost from c(P ∗G) = 59.4 in OPF to
c(P ∗G) = 112.5 which amounts to a 112.0% increment. This
is quite inefficient and we would like to balance the tradeoff
between economic efficiency and dynamics performance.
We therefore run our Dyn-OPF using h∗ = 32.398 ∈
[32.392, 32.808] dB and a∗ = 0.
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Fig. 6: Damping ratios and generation cost of New England
power grid

Figure 6 shows the modes stem graphs for the three
different optimization problems solved as well as the gen-
eration cost incurred by each. We can see that by allowing
a generation cost of c(P ∗G) = 86.0, i.e. a 61.9% increment,
we are able to obtain a damping ratio gain of ξDyn-OPF

ξOPF
=

2.02. The corresponding eigenvalues are shown in Figure
7. Although this cost increment might be unfeasible for
regular operation, it can certainly be afforded in order to
momentarily avoid an unexpected stressed condition.
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Fig. 7: Critical eigenvalues of New England power grid. The
counter-clockwise angle between the dashed lines and the
horizontal axis θ defines the damping ratio (ξ = cos(θ))

The frequency that maximizes H∞(A) is ω = 0. A
detailed analysis of the left and right singular vectors of the
singular value σmin(A) = σmax(j0I − A)−1 = H∞(A) for
the solutions of H∞ and OPF shows that the high gain of
the system transfer function H(s) = (sI−A)−1 is achieved
between PSS state variables of several groups of generators.
This suggests that the system configuration is in a point that
is mostly sensitive to changes on the PSSs parameters. It
also explains the differences between the power schedulings
on Table V and the little gain reduction of −0.41 dB from
OPF to H∞ , i.e. one needs considerable changes on the
scheduling in order to slightly improve H∞(A).

C. Discussion
There are several outcomes on this section that deserve

further discussion. For instance, the tradeoff between voltage



stability margin and transient amplitude may not seem to
be a significant problem for this application as utilities
are only interested in minimizing the generation cost while
guaranteeing fixed stability margins. However, this tradeoff
appears in the definition of the margin values themselves.
Fixing for instance a large voltage stability margin can hinder
the transient behavior of the system.

Additionally, Figures 4 and 6 suggest that some modes
are not sensitive to the power scheduling. This evidences
some limits of the framework. That is, if the critical modes
are not very sensitive to the power scheduling, then the
improvement may not be considerable. Therefore, while
using stability constraints in the OPF is effective in avoiding
stressed scenarios caused by a poor scheduling, it is certainly
not a substitute to current industry practices of controller
designs which are clearly needed to modify the modes that
are not sensitive to the scheduling.

Last but not least, this framework makes evident the
fact that as the operating point of the network changes,
the optimal parameters that may have been obtained in the
controller design stage, as in [6] for PSSs, is no longer
optimal.

V. CONCLUSIONS AND FUTURE WORK

This paper present a new optimization framework that
aims to close the gap between the market based power
dispatch and the security analysis that enforces predefined
stability margins and generates re-dispatching. Unlike pre-
vious works that consider constraints on the region of the
eigenvalues to either guarantee voltage stability or reduce
small signal oscillations, we propose the use of pseudo-
spectral abscissa as a unifying metric that jointly guarantees
both. Our framework not only balances the tradeoff between
robustness and economic efficiency, but it also allows the
characterization of the performance limits of the system. We
verify the efficacy of our formulation using two test cases
including the widely used IEEE 39-bus New England test
case.

As a future work, we are interested in extending our frame-
work to include controller synthesis. Optimal controllers are
usually designed based on a fixed base operating point.
However, as the state of the grid changes the designed
controllers are no longer optimum. In order to cope with the
future challenges of the incursion of renewable generation,
the future grid must be able to adapt and reconfigure the
controlling scheme online. We are also interested in expand-
ing our framework to include additional performance metrics
such as H2 norm.
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