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Abstract—This paper addresses the problem of sparse recovery
with graph constraints in the sense that we can take additive
measurements over nodes only if they induce a connected sub-
graph. We provide explicit measurement constructions for several
special graphs. A general measurement construction algorithm
is also proposed and evaluated. For any given graph G with n

nodes, we derive order optimal upper bounds of the minimum
number of measurements needed to recover any k-sparse vector
over G (MG

k,n). Our study suggests that M
G
k,n may serve as a

graph connectivity metric.

I. INTRODUCTION

Network monitoring is an essential module in the operation

and management of communication networks, where one

keeps track of network status parameters, such as bandwidth

utilization and queueing delay. Since measuring each compo-

nent (e.g., router) in the network directly can be operationally

costly, if feasible at all, the topic of inferring system internal

characteristics from indirect end-to-end (aggregate) measure-

ments becomes important. This area is known as network

tomography, and has been extensively studied during the last

decade or so [8], [11], [13], [21], [23], [27], [34].

Ideally, with the total number of aggregate measurements

much smaller than the number of nodes in a network, we

still hope to extract the status of each individual node. This

is possible if we have prior knowledge of the status (the

unknown signal to be recovered). For example, if the signal

is sparse, i.e. most entries are zero, we can recover it exactly

even though the number of measurements is much smaller

than the dimension of the signal. One practical example is that

only a small number of bottleneck links in the communication

networks experience large delays. Sparse Recovery addresses

the problem of recovering sparse signals from a smaller

number of measurements, and has two different but closely

related problem formulations. One is Compressed Sensing [4],

[9], [10], [17], [18], [22], where the signal is represented by a

high-dimensional real vector, and an aggregate measurement

is the arithmetical sum of the corresponding real entries. The

other is Group Testing [19], [20], where the high-dimensional

vector is logical, and a measurement is a logical disjunction

(OR) on the corresponding logical values.

One key question in both compressed sensing and group

testing is to design a small number of non-adaptive measure-

ments (either real or logical) such that all the vectors (either

real or logical) up to certain sparsity (the support size of

a vector) can be correctly recovered. Most existing results,

however, rely critically on the assumption that any subset

of the values can be aggregated together [9], [17], which

is not realistic in network monitoring problems where only

objects that form a path or a cycle on the graph [23], or

induce a connected subgraph can be aggregated together in the

same measurement. Only a few recent works consider graph

topological constraints in compressed sensing [14], [22], [25],

[33] and group testing [2], [12], [24], [28], [31].

Though directly motivated by network monitoring problems,

sparse recovery with graph constraints abstractly models sce-

narios when certain elements cannot be measured together in

a complex system. These constraints can result from various

reasons, not necessarily lack of connectivity. Therefore, our

results can be potentially useful to other applications besides

network tomography.

Here are the main contributions of this paper.

(1)We provide explicit measurement constructions for various

graphs. The number of our measurements is less than the

existing estimates (e.g. [12], [33]) of the minimum number of

measurements required to recover sparse vectors over graphs.

(Section III)

(2) We propose a measurement design guideline based on

r-partition for general graphs and further show some of its

properties. (Section IV-A)

(3) A simple measurement design algorithm is proposed for

general graphs, and we evaluate its performance both theoret-

ically and numerically. (Section IV-B and V)

We now start with Section II to introduce the model and

problem formulation.

II. MODEL AND PROBLEM FORMULATION

Consider a graph G = (V,E), where V denotes the set

of nodes with cardinality |V | = n and E denotes the set

of links. We assume G is fixed and known throughout the

paper. Each node i is associated with a real number xi, and

we say vector x = (xi, i = 1, ..., n) is associated with G. Let
T = {i | xi 6= 0} denote the support of x, and let ‖x‖0 = |T |
denote the number of non-zero entries of x, we say x is a

k-sparse vector if ‖x‖0 = k.
Let S ⊆ V denote a subset of nodes in G. Let ES denote

the subset of links with both ends in S, then GS = (S,ES)
is the induced subgraph of G. We have the following two

assumptions throughout the paper:

(A1): A set S of nodes can be measured together in one

measurement if and only if GS is connected.

(A2): The measurement is an additive sum of values at the

corresponding nodes.
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(A1) captures the graph constraints. One practical example

is a sensor network where the nodes represent sensors and the

links represent feasible communication between sensors. For

the set S of nodes that induce a connected subgraph, one node

u in S monitors the total values corresponding to nodes in S.
Every node in S obtains values from its children, if any, on

the spanning tree rooted at u, aggregates them with its own

value and sends the sum to its parent. Then the fusion center

can obtain the sum of values corresponding to all the nodes

in S by only communicating with u. (A2) follows from the

additive property of many network characteristics, e.g. delays

and packet loss rates [23]. However, compressed sensing can

also be applied to cases where (A2) does not hold, e.g., the

measurements can be nonlinear as in [5], [29].

Let y ∈ Rm (m ≪ n) denote the vector of m mea-

surements. Let A be an m × n measurement matrix with its

ith row corresponds to the ith measurement, and Aij = 1
(i = 1, ...,m, j = 1, ..., n) if and only if node j is included in
the ith measurement and Aij = 0 otherwise. We can write in

the compact form that y = Ax. We say a measurement matrix

A can identify all k-sparse vectors if and only if Ax1 6= Ax2

for every two different vectors x1 and x2 that are at most k-
sparse. This definition indicates that every vector x that is at

most k-sparse can be recovered from Ax via ℓ0-minimization,
which returns the sparsest vector among all that can produce

the measurement vector Ax. Sparse recovery theory indicates
that one can identify n-dimensional vectors from m (m ≪ n)
measurements as long as the vectors are sparse enough.
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Fig. 1. Network Example

With the above assumptions, A is a 0-1 matrix, and for each
row of A, the set of nodes that correspond to ‘1’ should form
a connected induced subgraph of G. In Fig. 1, we can measure
nodes in S1 and S2 separately, and the measurement matrix is

A =

[

1 1 1 0 1 1 0 0
0 0 1 1 0 0 1 1

]

.

We remark here that in group testing with graph constraints,

the requirements for the measurement matrix A are the same,

while group testing differs from compressed sensing only in

that (1) x is a logical vector, and (2) the operations used

in each group testing measurement are the logical “AND”

and “OR”. All arguments and results in this paper are in

the compressed sensing setup if not otherwise specified, and

we also compare our results with group testing results for

special networks. Note that for recovering 1-sparse vectors,

the numbers of measurements required by compressed sensing

and group testing are the same.

TABLE I
SUMMARY OF KEY NOTATIONS

Notation Meaning

GS Subgraph of G induced by S

MG
k,n Minimum number of measurements needed to identify k-

sparse vectors associated with G of n nodes.

MC
k,n Minimum number of measurements needed to identify k-

sparse vectors associated with a complete graph of n nodes.

f(k, n) Number of measurements constructed to identify k-sparse
vectors associated with a complete graph of n nodes

Given a graph G with n nodes, let MG
k,n denote the

minimum number of non-adaptive measurements needed to

identify all k-sparse vectors associated with G. Let MC
k,n

denote the minimum number of non-adaptive measurements

needed in a complete graph with n nodes. Since any subset of

nodes in a complete graph forms a connected subgraph, every

0-1 matrix is a feasible measurement matrix there. Existing

results [4], [10], [32] show that with overwhelming probability

a random 0-1 matrix with O(k log(n/k)) rows1 can identify

all k-sparse vectors associated with a complete graph, and

we can recover the sparse vector by ℓ1-minimization, which
returns the vector with the least ℓ1-norm

2 among those that

can produce the obtained measurements. Then we have

MC
k,n = O(k log(n/k)). (1)

We use (1) for the analysis of construction methods. Explicit

constructions of measurement matrices for complete graphs

also exist, e.g., [1], [4], [15], [16], [32]. We use f(k, n) to de-
note the number of measurements to recover k-sparse vectors
associated with the complete graph of n nodes by a particular

measurement construction method. f(k, n) varies for different
construction methods, and clearly f(k, n) ≥ MC

k,n. The key

notations are summarized in Table I.

The questions we would like to address in the paper are:

• Given a known graphG, what is the correspondingMG
k,n?

• How can we explicitly design measurements such that the

total number of measurements is close to MG
k,n?

III. SPARSE RECOVERY OVER SPECIAL GRAPHS

In this section, we consider three kinds of special graphs:

one-dimensional line/ring network, ring with each node con-

necting to four closest neighbors, and a tree. We construct

measurements for each graph and later generalize the con-

struction ideas obtained here to general graphs in Section IV.

A. Line and Ring

First consider one-dimensional line/ring network as shown

in Fig. 2. When later comparing the results here with those in

Section III-B one can see that the number of measurements

required to recover sparse vectors can be significantly different

1We use the notations g(n) ∈ O(h(n)), g(n) ∈ Ω(h(n)), or g(n) =
Θ(h(n)) if as n goes to infinity, g(n) ≤ ch(n), g(n) ≥ ch(n) or c1h(n) ≤
g(n) ≤ c2h(n) eventually holds for some positive constants c, c1 and c2
respectively.

2The ℓp-norm (p ≥ 1) of x is ‖x‖p = (
∑

i |xi|p)1/p , and ‖x‖∞ =
maxi |xi|.

1872



1 n

1 n

(a)

(b)

Fig. 2. (a) line network (b) ring network

in two graphs that only differ from each other with a small

number of links.

In a line/ring network, there is not much freedom in the

measurement design since only consecutive nodes can be mea-

sured together from assumption (A1). In fact, [24], [28] show

that ⌈n+1
2 ⌉ (or ⌈n

2 ⌉) measurements are both necessary and

sufficient to recover 1-sparse vectors associated with a line (or
ring) network with n nodes. Therefore, Θ(n) measurements
are required to recover even one non-zero element associated

with a line/ring network.

We next construct k⌈ n
k+1⌉+ 1 measurements to recover k-

sparse vectors (k ≥ 2) associated with the line/ring network.

Let t = ⌈ n
k+1⌉. For every 1 ≤ i ≤ kt+1, the ith measurement

goes through all the nodes from i to min(i+ t− 1, n).

Theorem 1. k⌈ n
k+1⌉ + 1 above measurements are sufficient

to identify all k-sparse vectors associated with a line/ring

network with n nodes.

Proof: Consider matrix A(tk+1)×(tk+t) with its ith row

having ‘1’s from entry i to entry i+t−1 and ‘0’s elsewhere for
all 1 ≤ i ≤ tk+ 1. Then the first n columns of A correspond

to our measurement matrix. To prove the statement, we only

need to show that A can identify all k-sparse vectors in Rtk+t,

which happens if and only if every non-zero vector z such that

Az = 0 holds has at least 2k + 1 non-zero elements [9].

For each index 1 ≤ k′ ≤ k, define a submatrix Ak′ , which

consists of the first tk′+1 rows and the first tk′+t columns of
A. We claim that every non-zero vectorw such that Ak′w = 0

holds has at least 2k′ +1 non-zero elements with at least two

non-zero elements in the last t entries. We prove this claim

by induction over k′.
First consider A1. Note that its first row has ‘1’s from

column 1 to t, and its last row has ‘1’s from column t+ 1 to

2t. Because any two columns of the submatrix A1 are linearly

independent, for any w 6= 0 such that A1w = 0, w must have

at least three non-zero elements. Let j be the index of the last
non-zero element of w. If j ≤ t, consider the jth row of A1

with its first ‘1’ entry in the jth column. The inner product of
the jth row and w is non-zero, contradicting the assumption

that A1w = 0. Then j ≥ t + 1 must hold. Then since the

inner product between w and the last row of A1 is zero, at

least two non-zero elements exist in the last t entries of w.

Now suppose the claim holds for Ak′ , consider a non-zero

vector w such that Ak′+1w = 0 holds. Note that the vector

of the first tk′ + t positions of w, denoted by ŵ, satisfies

Ak′ŵ = 0. We remark that ŵ 6= 0. If ŵ = 0, let j denote

the index of the first non-zero element of w, and we have

j ≥ tk′ + t+1. Consider the (j+1− t)th row of Ak′+1 with

its last ‘1’ entry in column j. Then the inner product of this

row with w is non-zero, which is a contradiction.

Since ŵ 6= 0, from the induction assumption, it has at least

2k′+1 non-zero elements with at least two non-zero elements
in its last t elements. Now consider the last 2t elements of
w and the last t+ 1 measurements in Ak′+1. From a similar

argument for the case of A1, we know that w must have at

least two non-zero elements in the last t positions. So w has

at least 2(k′ + 1) + 1 non-zero elements.

By induction over k′, every w 6= 0 satisfying Aw = 0 has

at least 2k+ 1 non-zero entries. This completes the proof.

Theorem 1 implies that we can save about ⌊ n
k+1⌋ mea-

surements but still be able to recover k-sparse vectors in a

line/ring network via compressed sensing. However, for group

testing associated with a line/ring network, one can check

that n measurements are necessary to recover more than one

non-zero element. The key is that every node should be an

endpoint at least twice, where the endpoints are the nodes at

the beginning and the end of a measurement. The endpoints of

a measurement can be a same node. If node u is an endpoint

for at most once, then it is always measured together with

one of its neighbors, say v, if ever measured. Then when v
is ‘1’, we cannot determine the value of u, either ’1’ or ’0’.
Therefore, to recover more than one non-zero element, we

need at least 2n endpoints, and thus n measurements.

B. Ring with nodes connecting to four closest neighbors

We know from Section III-A that ⌈n/2⌉ measurements are
necessary to recover even one non-zero element associated

with a ring network. Now consider a graph with each node

directly connecting to its four closest neighbors as in Fig. 3

(a), denoted by G4. G4 is important to the study of small-world

networks [30]. G4 has n more links than the ring network,

but we will show that the number of measurements required

by compressed sensing to recover k-sparse vectors associated
with G4 significantly reduces from Θ(n) to O(k log(n/k)).

Definition 1. Given G = (V,E), S ⊆ V is a hub for U ⊆ V
if GS is connected, and ∀u ∈ U , ∃s ∈ S s.t. (u, s) ∈ E.

Clearly in G4, if nodes are numbered consecutively around

the ring, then the set of all the odd nodes, denoted by To,
form a hub for the set of all the even nodes, denoted by

Te. Given a k-sparse vector x, let xo and xe denote the

subvectors of x with odd and even indices. Then xo and xe
are both at most k-sparse. The sum of entries in xo, denoted

by so, can be obtained by one measurement, and similarly

for the sum se of the entries of xe. For any subset W of

Te, To ∪ W induces a connected subgraph and thus can be

measured by one measurement. We can obtain the sum of

values corresponding to nodes in W by measuring nodes in

To ∪ W and then subtracting so from the sum. For example

in Fig. 3 (b) and (c), in order to measure the sum of the

pink nodes 2, 8 and 10, we measure the sum of pink nodes

and all the black odd nodes, and then subtract so from the

obtained summation. Though the subgraph induced by Te is
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(a) Topology of G4 (b) Odd nodes as a hub (c) Measure nodes 2,8 and 10 via hub (d) Delete h long links

Fig. 3. Sparse recovery on graph G4

not complete, we can still freely measure nodes in Te with the
help of the hub To. Therefore MC

k,⌊n/2⌋ + 1 measurements

are enough to recover xe ∈ R⌊n/2⌋, where the additional

one measurement measures so. Similarly, we can use Te as a
hub to recover the subvector xo ∈ R⌈n/2⌉ with MC

k,⌈n/2⌉ + 1
measurements, and thus x is recovered. From above, we have

Theorem 2. All k-sparse vectors associated with G4 can be

recovered with MC
k,⌊n/2⌋+MC

k,⌈n/2⌉+2 measurements, which

is O(2k log(n/(2k))) + 2.

Theorem 2 is important in the following three aspects.

Firstly, from ring network to G4, although the number

of links only increases by n, the number of measurements

required to recover k-sparse vectors significantly reduces from
Θ(n) to O(2k log(n/(2k))) + 2. Besides, this value is in the

same order as MC
k,n, while the number of links in G4 is only

2n compared with n(n− 1)/2 links in a complete graph.

Secondly, the idea of using a hub to design the measure-

ments is very important for our later results. If set S can

serve as a hub for U in graph G, then the induced graph GU

is “almost equivalent” to a complete subgraph in the sense

that we can measure any subset of nodes in U freely via

S. The number of measurements required to recover k-sparse
vectors associated with U is MC

k,|U| + 1 with one additional

measurement for the hub.

Thirdly, our estimate O(2k log(n/(2k))) + 2 on the min-

imum number of measurements required to recover k-sparse
vectors greatly improves over the existing results in [12], [33],

both of which are based on the mixing time of a random

walk. The mixing time T (n) is the smallest t′ such that a

random walk of length t′ starting at any node in G ends up

having a distribution µ′ with ‖µ−µ′‖∞ ≤ 1/(2cn)2 for some
c ≥ 1, where µ is the stationary distribution over the nodes

of a standard random walk over the graph G. [33] proves that
O(kT 2(n) logn) measurements can identify k-sparse vectors
with overwhelming probability by compressed sensing. [12]

uses O(k2T 2(n) log(n/k)) measurements to identify k non-

zero elements by group testing. In G4, one can easily see that

T (n) should be at least n/4. Then both results provide no

saving in the number of measurements for G4 as the mixing

time is Θ(n).
Besides the explicit measurement construction described

before Theorem 2, we can also recover k-sparse vectors with

O(log n) random measurements with high probability. We

need to point out that these random measurements do not

depend on the measurements of a complete graph.

Consider an n-step Markov chain {Xk, 1 ≤ k ≤ n} with

X1 = 1. For any k ≤ n − 1, if Xk = 0, then Xk+1 = 1;
if Xk = 1, then Xk+1 can be 0 or 1 with equal probability.

Clearly any realization of this Markov chain does not contain

two or more consecutive zeros, and thus is a feasible row of

the measurement matrix. Moreover,

Theorem 3. With high probability all k-sparse vectors asso-

ciated with G4 can be recovered with O(g(k) log n) measure-
ments obtained from the above Markov chain, where g(k) is

a function of k.

Proof: See Appendix.

Adding n links in the form (i, i + 2(mod n)) to the ring

network greatly reduces the number of measurements needed

from Θ(n) to O(log n). Then how many links in the form

(i, i + 2(mod n)) shall we add to the ring network such that

the minimum number of measurements required to recover k-
sparse vectors is exactly Θ(logn)? The answer is n−Θ(logn).
To see this, let G4

h denote the graph obtained by deleting h
links in the form (i, i + 2(mod n)) from G4. For example in

Fig. 3 (d), we delete links (3, 5), (8, 10) and (9, 11) in red

dashed lines from G4. Given h, our following results do not

depend on the specific choice of links to remove. We have

Theorem 4. The minimum number of measurements required

to recover k-sparse vectors associated with G4
h is lower

bounded by ⌈h/2⌉, and upper bounded by 2MC
k,⌈n

2
⌉ + h+ 2.

Proof: Let D denote the set of nodes such that for every

i ∈ D, link (i−1, i+1) is removed from G4. The proof of the

lower bound follows the proof of Theorem 2 in [28]. The key

idea is that recovering one non-zero element in D is equivalent

to recovering one non-zero element in a ring network with h
nodes, and thus ⌈h/2⌉ measurements are necessary.

For the upper bound, we first measure nodes in D separately

with h measurements. Let S contain the even nodes in D
and all the odd nodes. S can be used as a hub to recover

the k-sparse subvectors associated with the even nodes that

are not in D, and the number of measurements used is at

most MC
k,⌊n

2
⌋ + 1. We similarly recover k-sparse subvectors

associated with odd nodes that are not in D using the set of
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the odd nodes in D and all the even nodes as a hub. The

number of measurements is at most MC
k,⌈n

2
⌉ + 1. Sum them

up and the upper bound follows.

Together with (1), Theorem 4 directly implies that if

Θ(logn) links in the form (i, i + 2(mod n)) are deleted

from G4, then Θ(logn) measurements are both necessary and
sufficient to recover k-sparse vectors associated with G4

Θ(logn)

for any constant k. Moreover, the lower bound in Theorem 4

implies that if the number of links removed is Ω(logn), then
the number of measurements required for sparse recovery is

also Ω(logn). Thus, we need to add n− Θ(logn) links to a

ring network such that the number of measurements required

for sparse recovery is exactly Θ(logn).
Since the number of measurements required by compressed

sensing is greatly reduced when we add n links to the ring

network, one may wonder whether the number of measure-

ments needed to locate k non-zero elements by group testing

can also be greatly reduced or not. Our next result shows that

this is not the case for group testing.

Theorem 5. ⌊n/4⌋ measurements are necessary to locate two

non-zero elements associated with G4 by group testing.

Proof: Suppose two non-zero elements are on nodes 2i−1
and 2i for some 1 ≤ i ≤ ⌊n

2 ⌋. We view nodes 2i−1 and 2i as a
group for every i (1 ≤ i ≤ ⌊n

2 ⌋), denoted by Bi. If both nodes

in Bj are ‘1’s for some j, then every measurement that passes
either node or both nodes in Bi is always ‘1’. Consider a

reduced graph with Bi, ∀i as nodes, and link (Bi, Bj) (i 6= j)
exists only if in G4 there is a path from a node in Bi to a

node in Bj without going though any other node not in Bi or

Bj . Bi is ‘1’ if both node 2i− 1 and node 2i in G4 are ‘1’s

and is ‘0’ otherwise. The reduced network is a ring with ⌊n
2 ⌋

nodes, and thus ⌊n/4⌋ measurements are required to locate

one non-zero element in the reduced network. Then we need

at least ⌊n/4⌋ measurements to locate two consecutive non-

zero elements associated with R4, and thus, ⌊n/4⌋ is also a

lower bound for locating two general non-zero elements.

By Theorem 2 and Theorem 5, we observe that in G4,

with compressed sensing the number of measurements needed

to recover k-sparse vectors is O(2k log(n/(2k))), while with
group testing, Θ(n) measurements are required if k ≥ 2.

C. Tree

Next we consider a tree topology as in Fig. 4. For a given

tree, the root is treated as the only node in layer 0. The nodes

that are t steps away from the root are in layer t. We say the

tree has depth h if the farthest node is h steps away from the

root. Let ni denote the number of nodes on layer i, and n0 = 1.
We construct measurements to recover vectors associated with

a tree by the following tree approach.

We recover the nodes layer by layer starting from the root,

and recovering nodes in layer i requires that all the nodes

above layer i should already be recovered. First measure the

root separately. When recovering the subvector associated with

nodes in layer i (2 ≤ i ≤ h), we can measure the sum of any

subset of nodes in layer i using some nodes in the upper layers

root

layer 1

layer 2

layer 3

1

2 3 4

5 6 7

8 9 10

Fig. 4. Tree topology

as hub and then delete the value of the hub from the obtained

sum. One simple way to find a hub is to trace back from nodes

to be measured on the tree simultaneously until they reach one

same node. For example in Fig. 4, in order to measure nodes

5 and 7 together, we will trace back to the root and measure

nodes 1, 2, 3, 5, and 7 together and then subtract the values

of nodes 1, 2, and 3, which are already identified when we

recover nodes in the upper layers. With this approach, we have,

Theorem 6.
∑h

i=0 M
C
k,ni

measurements are enough to recover

k-sparse vectors associated with a tree with depth h, where
ni is the number of nodes in layer i.

IV. SPARSE RECOVERY OVER GENERAL GRAPHS

In this section we consider recovering k-sparse vectors over
general graphs. The graph is assumed to be connected. If not,

we simply treat each component as a connected subgraph and

design measurements to recover k-sparse subvectors associated
with each subgraph separately.

Inspired by the construction methods in Section III, in

Section IV-A we propose a general design guideline based

on “r-partition” which will be introduced soon. The key idea

is to divide the nodes into a small number of groups such

that nodes in the same group are connected to one hub, and

thus can be measured freely with the help of the hub. We

use the Erdős-Rényi random graph as an example to illustrate

the design guideline based on r-partition. Since finding the

minimum number of such groups in general turns out to be

NP-hard, in Section IV-B we propose a simple algorithm to

design a small number of measurements to recover k-sparse
vectors associated with any given graph.

A. Measurement Construction Based on r-partition

In G4, we divide nodes into odd nodes To and even nodes Te
and use each set as a hub for the other set. In general graphs,

we extend this idea and have the following definition:

Definition 2 (r-partition). Given G = (V,E), disjoint subsets
Ni (i = 1, ..., r) of V form an r-partition of G if and only if

these two conditions both hold: (1) ∪r
i=1Ni = V , and (2) ∀i,

V \Ni is a hub for Ni.

Clearly, To and Te form a 2-partition of graph G4. With the

above definition, we have

Theorem 7. If G has an r-partition Ni (i = 1, ..., r), then the

number of measurements needed to recover k-sparse vectors

associated with G is at most
∑r

i=1 M
C
k,|Ni|

+ r, which is

O(rk log(n/k)) + r.
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Proof: Note that MC
k,|Ni|

+ 1 measurements (with one

additional measurement for V \Ni) are enough to recover k-
sparse subvector associated with Ni via its hub V \Ni.

We remark that Theorem 2, 6, and 7 all result from hub

based measurement constructions. We next apply this result

to the Erdős-Rényi random graph G(n, p), which contains n
nodes and there exists a link between any two nodes indepen-

dently with probability p. Note that if p ≥ (1+ ǫ) logn/n for

some constant ǫ > 0, G(n, p) is connected almost surely [6].

Theorem 8. For Erdős-Rényi random graph G(n, p) with p =
β logn/n, if β ≥ 2+ ǫ for some constant ǫ > 0, then any two

disjoint subsets N1 and N2 of nodes with |N1| = |N2| = n/2
form a 2-partition with high probability. Moreover, with high

probability the number of measurements needed to recover k-
sparse vectors associated with G(n, p) is at most 2MC

k,n/2+2,

which is O(2k log(n/(2k))) + 2.

Proof: Let N1 be any subset of V with |N1| = n/2, and
let N2 = V \N1. Then GN1

and GN2
are both Erdős-Rényi

random graphs with n/2 nodes, and are connected almost

surely when p ≥ (2 + ǫ) logn/n.
We claim that with high probability, for every u ∈ N1,

there exists v ∈ N2 such that (u, v) ∈ E. Let P1 denote the

probability that there exists some u ∈ N1 such that (u, v) /∈ E
for every v ∈ N2. Then

P1 =
∑

u∈N1

(1− p)n/2 =
n

2
(1− β logn/n)n/2

=
n

2
(1 −

β logn

n
)

n
β log n

·β log n
2 ≤

n

2
e−

β log n
2 ≤

n−ǫ/2

2
,

where the last inequality holds from β ≥ 2+ ǫ. Then P1 goes

to zero as n goes to infinity, and the claim follows. Similarly,

one can prove that with high probability for every v ∈ N2,

there exists u ∈ N1 such that (u, v) ∈ E.
Then with high probability N1 and N2 form a 2-partition.

The second statement follows from Theorem 7.

[12] considers group testing over Erdős-Rényi random

graphs and shows that O(k2 log3 n) measurements are enough
to identify up to k non-zero entries in an n-dimensional
logical vector provided that p = Θ(k log2 n/n). Here with

compressed sensing setup and 2-partition results, we can

recover k-sparse vectors in Rn with O(2k log(n/(2k))) + 2
measurements when p > (2+ǫ) logn/n for some ǫ > 0. Note
that this result also improves over the previous result in [33],

which requires O(k log3 n) measurements for compressed

sensing on G(n, p).
From Theorem 7, the number of measurements used is

closely related to the value r. In general, one wants to reduce
r so as to reduce the number of measurements. Given graph

G and integer r, the question that whether or not G has an

r-partition is called r-partition problem. In fact,

Theorem 9. ∀r ≥ 3, r-partition problem is NP-complete.

Please refer to Appendix for its proof. We remark that we

cannot prove the hardness of the 2-partition problem though

we conjecture it is also a hard problem.

Subroutine 1 Leaves(G, u)

Input: graph G, root u
1 Find a spanning tree T of G rooted at u by breadth-first

search, and let S denote the set of leaf nodes of T .
2 Return: S

Subroutine 2 Reduce(G, u, H)

Input: G = (V,E), He for each e ∈ E, and node u
1 V = V \u.
2 for each two different neighbors v and w of u do

3 if (v, w) /∈ E then

4 E = E ∪ (v, w), H(v,w) = H(v,u) ∪H(u,w) ∪ {u}.
5 end if

6 end for

7 Return: G, H

B. Measurement Construction Algorithm for General Graphs

Section IV-A proposes the r-partition concept as a mea-

surement design guideline. But finding an r-partition with

the smallest r in general is NP-hard. Now given a connected

graph G, how shall we efficiently design a small number of

measurements to recover k-sparse vectors associated with G?
One simple way is to find the spanning tree of G, and

then use the tree approach in Section III-C. The depth of the

spanning tree is at least R, where R = minu∈V maxv∈V duv
is the radius of G with duv as the length of the shortest path

between u and v. This approach only uses links in the spanning
tree, and the number of measurements used is large when the

radius R is large. For example, the radius of G4 in Fig. 3

is n/4, then the spanning tree approach uses at least n/4
measurements, one for each layer. However, the number of

measurements can be as small as O(2k log(n/2k)) + 2 if we

take advantage of the additional links.

Here we propose a simple algorithm to design the measure-

ments for general graphs. The algorithm combines the ideas

of the tree approach and the r-partition. We still divide nodes

into a small number of groups such that each group can be

identified via some hub. Here nodes in the same group are the

leaf nodes of a spanning tree of a gradually reduced graph. A

leaf node has no children on the tree.

Let G∗ = (V ∗, E∗) denote the input graph. The algorithm is

built on the following two subroutines. Leaves(G, u) returns
the set of leaf nodes of a spanning tree of G rooted at u.
Reduce(G = (V,E), u, H) deletes u from G and fully

connects all the neighbors of u. Specifically, for every two

neighbors v and w of u, we add a link (v, w), if not already
exist, and let H(v,w) = H(v,u) ∪H(u,w)∪{u}, where for each
link (s, t) ∈ E, H(s,t) denotes the set of nodes, if any, that

serves as a hub for s and t in the original graph G∗. We record

H such that measurements constructed on a reduced graph G
can be feasible in G∗.

Given graph G∗, let u denote the node such that

maxv∈V ∗ duv = R, where R is the radius of G∗. Pick u
as the root and obtain a spanning tree T of G∗ by breadth-
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Algorithm 1 Measurement construction for graph G∗

Input: G∗ = (V ∗, E∗).
1 G = G∗, He = ∅ for each e ∈ E
2 while |V | > 1 do

3 Find the node u such that maxv∈V duv = RG, where

RG is the radius of G. S =Leaves(G, u).
4 Design f(k, |S|)+ 1 measurements to recover k-sparse

vectors associated with S using nodes in V \S as a hub.

5 for each u in S do

6 G = Reduce(G, u, H)

7 end for

8 end while

9 Measure the last node in V directly.

10 Output: All the measurements.

first search. Let S denote the set of leaf nodes in T . With

V ∗\S as a hub, we can design f(k, |S|) + 1 measurements

to recover up to k-sparse vectors associated with S. We then

reduce the network by deleting every u in S and fully connects

all the neighbors of u. For the obtained reduced networkG, we
repeat the above process until all the nodes are deleted. Note

that when designing the measurements in a reduced graph G,
if a measurement uses link (v, w), then it should also include
nodes in H(v,w) so as to be feasible in the original graph G∗.

In each step tree T is rooted at node u where maxv∈V duv
equals the radius of the current graph G. Since all the leaf

nodes of T are deleted in the graph reduction procedure, the

radius of the new obtained graph should be reduced by at least

one. Then we have at most R iterations in Algorithm 1 until

only one node is left. Clearly we have,

Theorem 10. The number of measurements designed by

Algorithm 1 is at most Rf(k, n) + R + 1, where R is the

radius of the graph.

We remark that the number of measurements by the span-

ning tree approach we mentioned at the beginning of Section

IV-B is also no greater than Rf(k, n) +R+ 1. However, we
expect that Algorithm 1 uses fewer measurements than the

spanning tree approach for general graphs, since Algorithm 1

also considers links that are not in the spanning tree. And it

is verified in Experiment 1 in Section V.

V. SIMULATION

Experiment 1 (Effectiveness of Algorithm 1): Given a graph

G, we apply Algorithm 1 to divide the nodes into groups such

that each group (except the last one) can be measured freely

via some hub. The last group only contains one node and can

be measured directly. We consider recovering 1-sparse vectors
as an example, since in complete graphs, MC

1,n = ⌈log(n +
1)⌉ can be computed exactly, and from (1) we know that the

number of measurements required to recovery k-sparse vectors
is within a constant times kMC

1,n. Since a matrix with the

binary expansion of interger i as column i of the measurement
matrix can identify 1-sparse vectors in a complete graph [19],
we construct such measurements for each group, and the total

number of measurements to recover 1-sparse vectors in G is
∑q−1

i ⌈log(ni + 1)⌉ + q, where ni is the number of nodes

in group i and q is the total number of groups. To recover

the sparse vectors from measurements, note that for 1-sparse
vectors, the corresponding subvector of measurements of each

group equals to either the zero vector or some constant times

the vector of the binary expansion of some integer i. Thus, one
can easily recover the location and the value of the non-zero

entry from measurements.

In Fig. 6, we gradually increase the number of links in

a graph with n = 1000 nodes. We start with a uniformly

generated random tree, and in each step randomly add 25
links to the graph. All the results are averaged over one hun-

dred realizations. The number of measurements constructed

decreases from 73 to 30 when the number of links increases

from n−1 to 2n−1. Note that the number of measurements is
already within 3MC

1,n when the average node degree is close

to 4. The radius R of the graph decreases from 13 to 7, and

we also plot the upper bound R⌈logn⌉+ R+ 1 provided by

Theorem 10. One can see that the number of measurements

actually constructed can be much less than the upper bound.

In Fig. 7, we consider the scale-free network with Barabási-

Albert (BA) model [3] where the graph initially has m0

connected nodes, and each new node connects to m existing

nodes with a probability that is proportional to the degree

of the existing nodes. We start with a random tree of 10

nodes and increase the total number of nodes from 64 to 1024.

Every result is averaged over one hundred realizations. Since

the diameter of BA model is O(log n/ log(log(n))) [7], then
by Theorem 10, the number of our constructed measurments

is upper bounded by O(log2 n/ log(log(n))). As the mixing

time of BA model is O(log n) [26], methods in [12] and [33]
require O(log3 n) random measurements.

Experiment 2 (Sparse Recovery Performance with Noise):

Compressed sensing theory indicates that if A is a random

0-1 matrix, with overwhelming probability we can recover the

sparse vector x0 though ℓ1-minimization [9]. Here we generate
a graph with n = 500 nodes from BA model. Algorithm 1

divides nodes into four groups with 375, 122, 2 and 1 node

respectively. For each of the first two groups with size ni

(i = 1, 2), we generate ⌈ni/2⌉ random measurements each

measuring a random subset of the group together with its hub.

We also measure the two hubs directly. Each of the three nodes

in the next two groups is measured directly by one measure-

ment. The generated matrix A is 254 by 500. We generate

a sparse vector x0 with i.i.d. zero-mean Gaussian entries on

a randomly chosen support, and normalize ‖x0‖2 to 1. To

recover x0 from y = Ax0, one can run ℓ1-minimization to

recover the subvectors associated with the first two groups, and

the last three entries of x0 can be obtained from measurements

directly. However, note that every measurement for the first

two groups passes through its hub, then any error in a hub

measurement will affect every measurement for the group of

nodes using this hub. To address this issue, we propose to

use a modified ℓ1-minimization in which the errors in the two
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hubs are treated as entries of an augmented vector to recover.

Specifically, let the augmented vector z = [xT
0 , e1, e2]

T and

the augmented matrix A′ = [A β γ], where e1 (or e2)
denotes the error in the measurement of the first (second)

hub, and the column vector β (or γ) has ‘1’ in the row

corresponding to the measurement of the first (or second)

hub and ‘0’ elsewhere. We then recover z (and thus x0) from

y = A′z via ℓ1-minimization on each group. Fig. 8 compares
the recovery performance of our modified recovering method

and the traditional ℓ1-minimization, where the hub errors e1
and e2 are drawn from a Gaussian distribution with zero mean

and unit variance. For every support size k, we randomly

generate one hundred k-sparse vectors x0, and let xr denote

the recovered vector. Even with the hub errors, the average

‖xr−x0‖2 is within 10
−6 when x0 is at most 25-sparse by our

method, while by ℓ1-minimization, the value is at least 0.5. We

also consider the case that besides errors in hub measurements,

every other measurement has i.i.d. zero-mean Gaussian noise.

Let w denote the noise vector and ‖w‖2 is normalized to 2.

The average ‖xr−x0‖2 here is smaller with our method than
that with ℓ1-minimization.

VI. CONCLUSION AND DISCUSSIONS

This paper addresses the sparse recovery problem with

graph constraints. By providing explicit measurement con-

structions for different graphs, we derive upper bounds of

the minimum number of measurements needed to recover

vectors up to certain sparsity. It would be interesting to explore

corresponding tight lower bounds. Further efforts are also

needed to empirically evaluate the performance of different

recovery themes, especially when the measurements are noisy.

We need to remark that this paper is only the first step

towards network measurement constructions with topological

constraints, and several practical concerns have not been taken

into account yet. For instance, we assume full knowledge of

the fixed network topology, and how to construct measure-

ments when the topology is time-varying or partially known

is an open question. We also assume that any number of nodes

can be measured together as long as they form a connected

subgraph, while in practice one may only measure a small

number of nodes in one measurement so as to reduce the

overhead and the measurement noise.

APPENDIX

A. Proof of Theorem 3

Let Am×n denote the matrix with m realizations of the n-
step Markov chain. To prove the statement, from [9], we only

need to show that the probability that every 2k columns of A
are linearly independent goes to 1 as n goes to infinity.

Let AI be a submatrix of A with columns in I , where I
is an index set with |I| = 2k. Let ASjI (1 ≤ j ≤ ⌊m

2k ⌋) be
a submatrix of AI formed by row 2k(j − 1) + 1 to row 2kj
of AI . Let P

I
d denote the probability that rank(AI)< 2k, and

let πI
d denote the probability that rank(ASjI )< 2k for given

j. Note that given I , πI
d is the same for every ASjI , ∀j. Note

that rank(AI)< 2k implies that rank(ASjI )< 2k for each such

matrix ASjI , then

P I
d ≤ (πI

d)
⌊ m
2k

⌋. (2)

To characterize πI
d , consider matrix B2k×2k with Bii = 0

for i = 2, 3, ..., 2k and Bij = 1 for all the other elements.

Since rank(B)= 2k, then

πI
d ≤ 1− P (ASjI is a row permutation of B). (3)

One can check that in this Markov chain, for every 1 ≤ i <
k ≤ n, P (Xk = 1 | Xi = 1) ≥ 1/2, P (Xk = 0 | Xi =
1) ≥ 1/4, P (Xk = 1 | Xi = 0) ≥ 1/2, and P (Xk = 1) ≥
1/2 by simple calculation. Since B has (2k)! different row
permutations, one can calculate that

P (ASjI is a row permutation of B) ≥ (2k)!/24k
2+2k−1.

(4)

Combining (2), (3) and (4), we have

P (every 2k columns of A are linearly independent)

=1− P (rank(AI) < 2k for some I with |I| = 2k)

≥1−

(

n

2k

)

P I
d ≥ 1−

(

n

2k

)

e−(2k)!( 1
2
)4k

2+2k−1⌊ m
2k

⌋, (5)

where the first inequality follows from the union bound. Then

if m = g(k) logn = (2k + 1)24k
2+2k−1 logn/(2k − 1)!,

from (5) we have the probability that every 2k columns of

A are linearly independent is at least 1 − 1/((2k)!n). Then
the statement follows.
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B. Proof of Theorem 9

Since checking whether or not r given sets form an r-
partition takes polynomial time, r-partition problem is NP.

We will show the r-partition problem is NP-complete for

r ≥ 3 by proving that the NP-complete r-coloring problem

(r ≥ 3) is polynomial time reducible to the r-partition
problem.

Let G = (V,E) and an integer r be an instance of r-
coloring. For every (u, v) ∈ E, add a node w and two links

(w, u) and (w, v). LetW denote the set of nodes added. Add a

link between every pair of nodes in V not already joined by a

link. Let H denote the augmented graph and let V ′ denote the

set of nodes in H . We claim that if there exists an r-partition
of H , then we can obtain an r-coloring of G, and vice versa.
Suppose Si (i = 1, ..., r) form an r-partition of H . Note

that for every (u, v) ∈ E, u and v cannot belong to the same

set Si for any i. Suppose u and v both belong to Si for some

i. Let w denote the node in W that only directly connects to

u and v. If w ∈ Si, then w has both neighbors in the same set

with w, contradicting the definition of r-partition. If w /∈ Si,

then HV ′\Si
is disconnected since w does not connect to any

node in V ′\Si. It also contradicts the definition of r-partition.
Thus, for every (u, v) ∈ E, node u and v belong to two sets

Si and Sj with i 6= j. Then we obtain an r-coloring of G.
Let Ci ⊂ V (i = 1, ..., r) denote an r-coloring of G. We

claim that Ni = Ci (i = 1, ..., r− 1), and Nr = Cr ∪W form

an r-partition of H . First note ∀u ∈ V , at least one of its

neighbors is not in the same set as u, since HV is a complete

subgraph. ∀w ∈ W , w is directly connected to u and v with

(u, v) ∈ E. From the definition of r-coloring, u and v are in

different sets Ci and Cj for some i 6= j. Therefore, w has at

least one neighbor that is not in Nr. Second, we will show

HV ′\Ni
is connected for all i. HV ′\Nr

is a complete subgraph,

and thus connected. ∀i < r, let Si := V \Ci, then V ′\Ni =
Si ∪ W . HSi

is a complete subgraph, and thus connected.

∀w ∈ W , since its two neighbors cannot be both in Ci, then

at least one neighbor belongs to Si, thus HV ′\Nr
= HSi∪W

is connected. Ni (i = 1, ..., r) indeed forms an r-partition.
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