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Abstract—In this paper, we review our recent results on sparse
recovery over graphs, which was motivated by network tomogra-
phy problems. Our finding has made a new connection between
coding theory and graph theory. We also discuss robustness of
our proposed measurement construction.

I. INTRODUCTION

Compressive sensing is a new paradigm in signal processing
theory, which proposes to sample and recover parsimonious
signals efficiently. The basic idea of compressive sensing is
that if an object being measured is well-approximated by a
lower dimensional object (e.g., sparse vector, low-rank matrix,
etc.) in an appropriate space, one can exploit this property to
achieve perfect recovery of the object. Compressive sensing
[3][9] characterizes this phenomenon for sparse signal vectors,
and presents efficient signal recovery schemes, from a small
number of measurements. It has been applied to seismology,
error correction and medical imaging since the breakthrough
works [3][9]. However, its role in networking is still in its early
stage [7][8][12][20].

In many of the compressive literature, there are no re-
strictions on how the compressive sensing matrices are con-
structed [3][9]. But this is generally not the case in real-
world applications. The physical constraints of specific ap-
plications make some measurements matrices infeasible, and
thus greatly limit the set of feasible measurements. In [22]
and [23], we formulated and considered compressive sensing
problems where the constructions of the measurement matri-
ces have to satisfy certain graph-theoretic constraints. These
graph-constrained compressive sensing problems are mainly
motivated by compressive sensing applications in networks.
Network Link Monitoring: In operating communication net-
works, we are often interested in inferring and monitoring the
network performance characteristics, such as delay and packet
loss rate, associated with each link. However, making direct
measurements and monitoring for each link can be costly and
operationally difficult, often requiring the participation from
routers or potentially unreliable middle network nodes, while
end-to-end communication path characteristics are often readily
available. The problem of quickly inferring and monitoring the
network link characteristics from indirect end-to-end (aggre-
gate) measurements falls in the area of network tomography,
which is useful for network traffic engineering [20] and fault
diagnosis [2][4][6][10] [11][13][14][15][16][17][18][19][21].

Suppose that we have probes along m source-destination
pairs over a network (m is smaller than the number n of
network links in the networks). We are interested in identifying
congested links with large delays or high packet loss rates from
the probe measurements. We note that the delay over each

source-destination pair is a sum of the delays over each link on
the route between this source-destination pair, giving a natural
linear mixing of the link delays on the route. Abstractly, let x
be an n× 1 non-negative vector whose j-th element represents
the delay over edge j and let y be an m×1 dimensional vector
whose i-th element is the end-to-end delay measurement for the
i-th source-destination pair. Then

y = Ax, (1)

where A is an m × n matrix, whose element in the i-th row
and j-th column is ‘1’ if the i-th source-destination pair routes
through the j-th link and ‘0’ otherwise.
n > m means we only have an underdetermined system,

but it is reasonable to assume that there are only a small
fraction of links that are congested, i.e., their link delays
are considerably larger than the delays over other links. This
provides the foundation to link our network tomography prob-
lems to compressive sensing. However, there are important
differences between network tomography problems and general
compressive sensing formulations:

• the element Ai,j from A is either 0, when the measurement
path i does not go through link j, or an integer b, when
the measurement path i goes through link j for b > 0
times. Generally, the number b is ‘1’, which often makes
the matrix a ‘0’ and ‘1’ matrix.

• More importantly, all the nonzero elements in row i of A
must correspond to a connected communication path (or
walk).

It is natural to ask whether the idea of compressive sensing
still works using these graph-constrained measurements. In this
paper, we review and compare two approaches for constructing
graph-constrained measurements: random walk constructions
and deterministic constructions. We also provide our recent
results on the robustness of graph-constrained compressive
sensing constructions.

The paper is organized as follows. In Section II, we give a
general mathematical model for graph-constrained compressive
sensing. In Section III, we review a random walk approach for
constructing graph-constrained measurements. In Section IV,
we review a deterministic construction of measurement ma-
trices for compressive sensing, and compare the deterministic
construction with the random walk construction. Section V
presents results on the robustness of graph-constrained com-
pressive sensing. We conclude in Section VI.

II. MATHEMATICAL FORMULATION

Consider a graph G = (V,E), where V denotes the set of
nodes with cardinality |V | = n and E denotes the set of links.
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Each node i is associated with a real number xi, and we say
vector x = (xi, i = 1, ..., n) is associated with G. Let T =
{i | xi �= 0} denote the support of x, and let ‖x‖0 = |T |
denote the number of non-zero entries of x, we say x is a k-
sparse vector if ‖x‖0 = k. We aim to infer the vector x from
indirect additive observations.

Let S ⊆ V denote a subset of nodes in G. Let ES denote the
subset of links with both ends in S, then GS = (S,ES) is the
induced subgraph of G. We have the following two assumptions
throughout the paper:
(A1): A set S of nodes can be measured together in one
measurement if and only if GS is connected. (A2): The
measurement is an additive sum of values at the corresponding
nodes.

(A1) captures the graph constraints.
(A2) follows from the additive property of many network

characteristics, e.g. delays and packet loss rates.
Note that for the mentioned network link monitoring appli-

cation, we can abstract each network link as a node in the
graph G, and two nodes in G are connected by an edge in
G = (V,E) if and only if the corresponding network links
share the same network terminal. It is essential to notice the
distinction between the “network link” and “graph edge” when
translating the network link monitoring application to this graph
model.

Let y ∈ Rm (m � n) denote the vector of m measurements.
Let A be an m × n measurement matrix with Aij = 1 (i =
1, ...,m, j = 1, ..., n) if and only if node j is included in
the ith measurement and Aij = 0 otherwise. Then we have
y = Ax. We say A can identify all k-sparse vectors if and only
if Ax1 �= Ax2 for every two different vectors x1 and x2 that
are at most k-sparse. The advantage of sparse recovery is that
with the non-adaptive measurement matrix A, it can identify
n-dimensional vectors from m (m � n) measurements as long
as the vectors are sparse.

Fig. 1: Network Example

With the above assumptions, A is a 0-1 matrix and for each
row of A, the set of nodes that correspond to ‘1’ should form
a connected induced subgraph of G. In Fig. 1, we can measure
nodes in S1 and S2 separately, and the measurement matrix is

A =

[
1 1 1 0 1 1 0 0
0 0 1 1 0 0 1 1

]
.

Given a graph G with n nodes, let MG
k,n denote the minimum

number of non-adaptive measurements needed to identify all
k-sparse vectors associated with G. Let MC

k,n denote the
minimum number of non-adaptive measurements needed in a

complete graph with n nodes. In complete graphs, since any
subset of nodes can be measured together, any 0-1 matrix is a
feasible measurement matrix. Existing results [26], [24], [31]
show that with overwhelming probability a random 0-1 matrix
with O(k log(n/k)) rowscan identify all k-sparse vectors, and
we can recover the sparse vector by �1-minimization, which
returns the vector with the least �1-norm1 among those that
can produce the obtained measurements. Then we have

MC
k,n = O(k log(n/k)). (2)

We will use (2) for the analysis of construction methods.
Explicit constructions of measurement matrices for complete
graphs also exist, e.g., [24], [27], [28], [31]. In this paper, given
a graph, we will discuss how to construct graph-constrained
measurement matrices and give general bounds on how many
measurements we need.

III. GRAPH-CONSTRAINED MEASUREMENTS FROM

RANDOM WALKS

In this section, we consider construction of measurement
matrices using random walks on the graph. In our construction,
each row of the measurement matrix A corresponds to a single
random walk of a predetermined length t on the graph. If the
i-th random walk, which corresponds to the i-th row of the
measurement matrix, goes through node j, then Ai,j = 1;
otherwise, Ai,j = 0. For each random walk, we uniformly
randomly pick a starting vertex from V and then perform a
standard random walk over the graph. The length of the random
walk is denoted by t.

It has been demonstrated in [22] that O(k log(n)) measure-
ments are enough for recovering any k-sparse link vector for a
sufficiently connected graph with n nodes.

1) Graph Assumptions: Before we proceed, following the
works on graph-constrained group testing [11], [5], we intro-
duce the following assumptions on the graphs.

The undirected graph G = (V,E) is called a (D, c) uniform
graph if for some constant c, the degree of each vertex v ∈ V
is between D and cD. Suppose that a standard random walk
over the graph has a stationary distribution μ over the nodes.
The δ-mixing time of G is defined as the smallest t′ such that
a random walk of length t′ starting at any vertex in G ends up
having a distribution μ′ such that ‖μ − μ′‖∞ ≤ δ. We define
T (n) as the δ-mixing time of G for δ = 1

(2cn)2 .
2) O(k log(n)) measurements are sufficient: In compressive

sensing, we adopt an m × n measurement matrix generated
by m independent random walks. From [22], we have the
following theorem,

Theorem 1. There is a degree D0 = O(c2kT 2(n)) and
t = O( nD

c3kT (n) ) such that whenever D ≥ D0, by setting

the path lengths t = O( nD
c3kT (n) ) the following holds. If

m = O(c4T 2(n)k log(n)), then with high probability, all the
k-sparse signal vectors can be recovered from m measurements
generated by m random walks.

1The �p-norm (p ≥ 1) of x is ‖x‖p = (
∑

i |xi|
p)1/p , and ‖x‖∞ =

maxi |xi|.
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m Compressive sensing Group Testing
Graph constrained O(k log(n))(this paper) O(k2 log(n

k
))[5]

General O(k log(n
k
))[3] O(k2 log(n

k
))[30]

TABLE I: Number of measurements needed in different sce-
narios

Table I summarizes the results for the number of mea-
surements needed in graph constrained problems or general
problems without graph constraints.

It can also be shown that with m = O(c4T 2(n)k log(n))
measurements generated by random walks, �1 minimization
decoding for sparse recovery can be used to recover k-sparse
signal vectors.

IV. GRAPH-CONSTRAINED MEASUREMENTS FROM

DETERMINISTIC CONSTRUCTIONS

A. Measurement Construction Based on r-partition

Different from the random walk measurement, we now give
a deterministic measurement construction for graph-constrained
compressive sensing based on a concept of r-partition for a
general graph G. We first give the definition of r-partition [23].

Definition 1 (r-partition). Given G = (V,E), disjoint subsets
Ni (i = 1, ..., r) of V form an r-partition of G if and only
if these two conditions both hold: (1) ∪r

i=1Ni = V , and (2)
∀i, V \Ni is a hub for Ni, namely, V \Ni induces a connected
subgraph and any node from Ni is directly connected to at
least one node from V \Ni.

With the above definition, we have the following theorem
about measurement construction using r-partition. The basic
idea is to use the hub V \Ni as the bridge, one can then freely
get the sum of any subset, say S′ ⊆ Ni, of nodes in the set
Ni. Since the hub V \Ni induces a connected subgraph, one
can measure the sum of all the nodes in V \Ni. Using the hub
V \Ni as the bridge, one can measure the sum of all the nodes
in the subset S′ ⊆ Ni and V \Ni. This is possible because any
node in S′ is directly connected to the hub V \Ni. By a simple
subtraction, we know immediately the sum of all the nodes in
the subset S′. So we have the following theorem.

Theorem 2. [23] If G has an r-partition Ni (i = 1, ..., r),
then the number of measurements needed to recover k-sparse
vectors associated with G is at most

∑r
i=1 M

C
k,|Ni|

+ r, which
is O(rk log(n/k)) + r.

Proof: Note that MC
k,|Ni|

+ 1 measurements are enough
to recover k-sparse subvector associated with Ni via its hub
V \Ni. Note that the one additional measurement is for the
measurement offering the sum of all the nodes in V \Ni.

We next apply this result to the Erdős-Rényi random graph
G(n, p), which contains n nodes and there exists an link
between any two nodes independently with probability p. Note
that if p ≥ (1 + ε) logn/n for some constant ε > 0, G(n, p) is
connected almost surely [25].

Theorem 3. [23] For Erdős-Rényi random graph G(n, p) with
p = β logn/n, if β ≥ 2 + ε for some constant ε > 0, then

any two disjoint subsets N1 and N2 of nodes with |N1| =
|N2| = n/2 form a 2-partition with high probability. Moreover,
with high probability the number of measurements needed to
recover k-sparse vectors associated with G(n, p) is at most
2MC

k,n/2 + 2, which is O(2k log(n/(2k))) + 2.

Proof: We reproduce the proof from [23] here. Let N1

be any subset of V with |N1| = n/2, and let N2 = V \N1.
Then GN1

and GN2
are both Erdős-Rényi random graphs with

n/2 nodes, and are connected almost surely when p ≥ (2 +
ε) logn/n.

We claim that with high probability, for every u ∈ N1,
there exists v ∈ N2 such that (u, v) ∈ E. Let P1 denote the
probability that there exists some u ∈ N1 such that (u, v) /∈ E
for every v ∈ N2. Then

P1 =
∑
u∈N1

(1− p)n/2 =
n

2
(1− β logn/n)n/2

=
n

2
(1− β logn

n
)

n
β log n

· β log n

2 ≤ n

2
e−

β log n

2 ≤ n−ε/2

2
,

where the last inequality holds from β ≥ 2 + ε. Then P1 goes
to zero as n goes to infinity, and the claim follows. Similarly,
one can prove that with high probability for every v ∈ N2,
there exists u ∈ N1 such that (u, v) ∈ E.

Then with high probability N1 and N2 form a 2-partition.
The second statement follows from Theorem 2.

It is now interesting to compare the results of deterministic
construction and random-walk construction. [5] considers group
testing over Erdős-Rényi random graphs using random walks
and shows that O(k2 log3 n) measurements are enough to
identify up to k non-zero entries in an n-dimensional logical
vector provided that p = Θ(k log2 n/n). Here with compressed
sensing setup and 2-partition results, we can recover k-sparse
vectors in Rn with O(2k log(n/(2k))) + 2 measurements
when p > (2 + ε) logn/n for some ε > 0. Note that this
result also improves over the result in [22], which requires
O(k log3 n) random-walk measurements for compressed sens-
ing on G(n, p). So for certain

V. SENSITIVITY ANALYSIS OF THE HUB MEASUREMENT

The key idea to design measurements on graphs is that we
can use a connected subset H of nodes as a hub to freely
measure the set S of nodes that are directly connected to the
hub. We measure the hub with one measurement. The sum of
any subset of nodes in S is obtained by first measuring the sum
of these nodes and H , and then deleting the sum of H . This
raises the issue that if the measurement of H has an error, and
all the measurements we take over S using H a hub are correct,
this single error in H is propagated into all the measurements
since we need to delete the erroneous measurement of H from
every other measurement.

Mathematically, let xS denote the sparse vector associated
with S, and let xH denote the vector associated with H and let
Am×|S| be the measurement matrix that can identify k errors
on a complete graph of |S| nodes. We arrange the vector x
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such that x = [xT
S xT

H ]T , then

F =

[
A W
0T
|S| 1T

|H|

]

is the measurement matrix for detecting k errors in S using
hub H , where W is an m by |H | matrix with all ‘1’s, 0|S| is
a |S|-dimensional column vector of all ‘0’s, and 1|H| is a |H |-
dimensional column vector of all ‘1’s. Let vector z denote the
first m measurements, and let z0 denote the last measurement
of the hub H . Then[

z

z0

]
=

[
AxS + 1TxH

1TxH

]
,

or equivalently
z− z01m = AxS ,

and xS can be correctly covered given z, z0 and A by the
Compressed Sensing theory. Now if there is some error e0 in
the last measurement, i.e.,

ẑ0 = 1T
|H|xH + e0,

then when recovering xS , we have

AxS = z− ẑ01m = z− z01m − e01m.

Then error e0 in the hub measurement can in fact lead to errors
in every other measurement of nodes in S, and finally the error
in the recovery of xS .

To eliminate the impact of the errors in the hub measure-
ments on the recovery accuracy, we model the errors in the
hub measurements as entries of an augmented sparse signal
to recover. In the above example, let x′ = [xT e0]

T , let
F ′ = [F em+1], where ei is a column vector with ‘1’ on
the ith entry and ‘0’ elsewhere. Then the measurements and
the augmented signal are related by[

z

ẑ0

]
= F ′x′ = Fx+ e0em+1 =

[
AxS + 1TxH

1TxH + e0

]
.

When recovering xS , we delete the sum of the hub from every
other measurement, and the obtained equations are

AxS − e01m = z− ẑ01m,

with the equivalent matrix form

A′x′
S = z− ẑ01m,

where A′ = [A − 1m], and x′
S = [xT

S e0]
T . We know

that with the measurement matrix A, one can recover all k-
sparse |S|-dimensional vectors xS , but with the erroneous hub
measurement, the question now is can one recover |S|+1-sparse
vector x′

S with the measurement matrix A′? If the answer is yes,
then with the measurement design method we proposed earlier,
by augmenting the measurement matrix and the sparse vector to
recover, we can easily recover the sparse vector together with
the errors, if any, in the hub measurements. We next show that
under certain conditions, the statement is indeed true, and with
the same way of measurement construction as we proposed

earlier, one can recover sparse vectors with the presence of
errors in hub measurements.

Since the recovery performance varies for different recovery
methods, we focus on the �1-minimization method the widely
used in Compressed Sensing. Given measurement matrix A
and the measurements y = Ax, �1-minimization returns vector
x∗ with the least �1-norm among all the vectors x′ such that
Ax′ = y and uses x∗ as an estimate the unknown vector x. The
following lemma provides the equivalent null space condition
of successful sparse recovery via �1-minimization when the hub
error exists.

Lemma 1. Given the augmented matrix A′ = [A − 1m], �1-
minimization successfully recovers k-sparse vectors xS ∈ Rn

in the presence of some unknown error e0 in the hub mea-
surement if and only if for every non-zero vector w such that
A′w = 0, and for every set T ⊆ {1, ..., n} with |T | ≤ k, it
holds that

‖wT ‖1 + |wn+1| ≤ ‖wT c‖1,
where T c = {1, ..., n}\T .

The recovery performance also varies for different mea-
surement construction methods, here we consider the random
measurement construction for complete graphs in which that
every node is included in a measurement independently with
probability 0.5, and every measurement is independent of each
other. Mathematically, P (Aij = 1) = 0.5 and P (Aij = 0) =
0.5 independently for every i and j. Let the number of the
randomly chosen measurements be m = O(k log(n/k)), and
we will choose the scaling constant later. We also add one
row to A with all ‘1’s, and it only increases the number of
measurements by one. For such a measurement matrix A for
complete graphs, we have the following result.

Theorem 4. Given n nodes that can be measured freely via
one hub, if the measurement matrix A(m+1)×n with m =
O(k log(n/k)) for a complete graph has one row of all ‘1’s,
and every other entry independently takes value ‘1’ or ‘0’ with
equal probability, then with probability at least 1−O(n−α) for
some constant α > 0, �1-minimization can successfully recover
all k-sparse vectors in Rn even if the hub measurement is
erroneous.

The proof of Theorem 4 lies heavily on Lemma 2, so we
first state it as follows.

Lemma 2. If matrix Φm×n takes value −1/
√
m on every

entry in the last column and takes value ±1/
√
m with equal

probability independently on every other entry, then for any
δ > 0, there exists some constant C such that as long as
m ≥ Ck log(n/k) and n is large enough, with probability
at least 1−O(n−α) for some constant α > 0 it holds that for
every set S ⊆ {1, ..., n} with |T | ≤ 2k+1 and for every vector
x ∈ R2k+1,

(1− δ)‖x‖22 ≤ ‖ΦSx‖22 ≤ (1 + δ)‖x‖22. (3)

Proof: Consider an m by n matrix Φ′ with each entry
taking value ±1/

√
m with equal probability independently.
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For every realization of matrix Φ′, construct a matrix Φ̂ as
follows. For every i ∈ {1, ...,m} such that Φ′

in = 1/
√
m, let

Φ̂ij = −Φ′
ij for all j = 1, ..., n. Let Φ̂ij = Φ′

ij for every other
entry. One can check that Φ̂ and Φ follow the same probability
distribution. Besides, according to the construction of Φ̂, for
any subset S ⊆ {1, ..., n},

Φ′
S
T
Φ′

S = Φ̂T
S Φ̂S . (4)

The Restricted Isometry Property in Compressed Sensing [26]
states that for any δ > 0, if m ≥ Ck logn for some constant C
and n is large enough, then with probability at least 1−O(n−α)
for some constant α > 0 such that for every set S ⊆ {1, ..., n}
with |T | ≤ 2k + 1 and for every vector x ∈ R2k+1,

(1 − δ)‖x‖22 ≤ ‖Φ′
Sx‖22 ≤ (1 + δ)‖x‖22 (5)

holds simultaneously.
Since (4) holds for all S, and ‖Φ′

Sx‖22 = xTΦ′
S
T
Φ′

Sx, then
the above statement still holds if we replace Φ′

S with Φ̂S in
(5). Since Φ̂ and Φ follow the same probability distribution,
the lemma follows.

As the number of nodes in a network goes to infinity, if
the number of groups of nodes that can be measured together
via some hub remains constant, and the number of nodes in
each group goes to infinity, (one example of such network
is G4,) then by applying Theorem 4 with a simple union
bound, we know that with high probability �1-minimization
can successfully recover all the sparse vectors even if the hub
measurements are erroneous, provided that while designing the
measurement matrix for a general graph based on hubs, we
randomly generate matrices with each entry taking value ‘0’ and
‘1’ with equal probability independently as the measurement
matrices for complete graphs.

VI. CONCLUSION

In this paper, we considered the applications of compressive
sensing in networks. We formulated the graph-constrained com-
pressive sensing problem and reviewed some recent research
progress in designing graph-constrained measurement matrices
for compressive sensing. We further compared both random
and deterministic graph-constrained measurement matrices. The
robustness of the deterministic construction was also studied.
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