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Abstract—The paper considers a TCP/IP-style network with
flow control at end-systems based on congestion feedback and
routing decisions at network nodes on a per-destination basis. The
main generalization with respect to standard IP is to allow routers
to split their traffic in a controlled way between the outgoing links.
We formulate global optimization criteria, combining those used
in the congestion control and traffic engineering, and propose
decentralized controllers at sources and routers to reach these op-
timal points, based on congestion price feedback. We first consider
adapting the traffic splits at routers to follow the negative price
gradient; we prove this is globally stabilizing when combined with
primal congestion control, but can exhibit oscillations in the case
of dual congestion control. We then propose an alternative antici-
patory control of routing, proving its stability for the case of dual
congestion control. We present a concrete implementation of such
algorithms, based on queueing delay as congestion price. We use
TCP-FAST for congestion control and develop a multipath variant
of the distance vector routing protocol RIP. We demonstrate
through ns2-simulations the collective behavior of the system, in
particular that it reaches the desired equilibrium points.

Index Terms—Congestion control, multipath routing, optimiza-
tion.

I. INTRODUCTION

T HE congestion present in a packet-switched network at
any given time is a function of the amount of traffic intro-

duced by the transport layer and of the routes chosen by the net-
work layer to carry this traffic to destination. Ideally, both rates
and routes should be controlled to ensure the most efficient and
fair utilization of the available bandwidth. However, while TCP
congestion control is in widespread use, it has been tradition-
ally difficult to adapt the network layer to congestion, except at
the very slow time-scales, where traffic engineering is used for
congestion planning. A large part of the difficulty lies in the use
by IP routers of single paths to destination. Attempting to adapt
such paths to instantaneous congestion results in routing insta-
bilities, observed since the early days of the Arpanet and well
documented in academic studies [2], [24]. In contrast, multipath
routing can more easily reach equilibrium: Instead of drastic
switches of large bulks of traffic, it can gradually adapt the traffic
mix between different routes.
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Mathematically, the distinction between single-path and
multipath routing reveals itself when we consider the optimiza-
tion of a convex congestion cost to serve a matrix of end-to-end
demands. This problem is nonconvex when one optimizes over
single-path routes, but its relaxation to multipath amounts to
convex multicommodity optimization. References on these
problems and their use for traffic engineering are [2], [5], [6],
and [21].

The optimization interpretation is particularly useful if one
seeks to combine multipath routing with congestion control
since the latter has also been framed in terms of convex opti-
mization of utility [10], [14], [22]. Indeed, a multipath proposal
is already present in Kelly’s original work [10] (see also [8],
[12], and [23]); here, one defines a rate variable for each
end-to-end path from source to destination, and the sources
control all these variables to optimize overall utility. This pro-
posal, while mathematically well-behaved, implies essentially
to transfer functionality from the network layer to the transport
layer, which must now be aware of paths inside the network,
and has scalability problems since the number of such paths is
exponential.

A more scalable, node-centric alternative is to have routers
take charge of the multipath function by controlling the split
of traffic to each destination among their outgoing links. This
idea goes back to Gallager [7] (followed by [1]) for the case of
fixed input traffic; in that work, the traffic split is adapted fol-
lowing the gradient of an overall cost function, interpreted as
network delay. Following some ideas in [2], this approach can
also be adapted to include “primal” flow control, as shown in
[25], which also combines it with a gradient algorithm for power
control in the case of a wireless network. Other cross-layer work
with the node-centric view for wireless networks are [4] and
[13], where instead of the smooth adaptation of traffic splits, the
object of optimization is the scheduling of wireless transmis-
sions at each time slot. In [18], we proposed a combination of
gradient-based multipath routing with primal and dual conges-
tion control, identifying the criteria that are optimized in each
case and giving partial stability results.

In this paper, we extend and develop the work of [18] in many
respects. In Section II, we present the formulation from [18],
and in Section III, we review the stability theory for primal
laws with gradient-based multipath adaptation as in [7]. We find,
however, that this method is unable to provide dynamic stability
in the case of dual congestion control: Oscillatory instabilities
can occur due to the second order nature of the dynamics. In
response to this, we propose, in Section IV, an anticipatory ap-
proach to route adaptation, where the control of traffic splits in-
cludes a “derivative action” term that induces stability. We prove
that this control achieves the global, social welfare equilibrium,
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with local stability under any network. Some proofs are relayed
to the Appendices.

We follow the theoretical work with a discussion on imple-
mentation in Section V, leading to a proposal that demonstrates
the practical feasibility of the approach and its moderate require-
ments with respect to current practice in TCP-IP networks. Of
the different alternatives for congestion price, we focus here
on queueing delay, used by TCP variants such as Vegas [3]
and FAST [9]. The information requirements between nodes are
similar to those in a distance vector protocol, here with con-
gestion price as a measure of distance; we develop a variant of
RIP [19] that suits this purpose. We also introduce modifications
to TCP-FAST to suit the multipath setting. In Section VI, we
present simulation work in ns2 that demonstrates the properties
of this implementation and, in particular, validates the analytical
studies. Conclusions are given in Section VII.

II. PROBLEM FORMULATION

We consider a network made up of a set of nodes and a set
of directed links between them. Nodes, denoted by the indices

and , can be sources or destinations of packets or intermediate
router nodes. We describe the links either by a single index or
by the directed pair of nodes they connect.

The network supports various flows between source–destina-
tion pairs of nodes. We use the index to denote an indi-
vidual flow or “commodity,” and , respectively denote
the corresponding source and destination nodes. While these are
unique for each , we allow the traffic to follow multiple paths
between source and destination. This is modeled through the
following variables for each :

• , external flow in packets per second entering the net-
work at the source;

• , flow through link ;
• , total flow coming into node .

At the source node, the incoming flow is only external

(1)

The inflow balance equation for node is

(2)

and the outflow balance of node is

(3)

The total flow on link is given by

(4)

A. Optimization Problems

Following [10], we associate with each commodity an
increasing, concave utility function that specifies the
flow’s demand for rate. We formulate a multipath counterpart
of the “system problem” in [10].

Problem 1 (WELFARE): Maximize subject to
link capacity constraints and flow balance constraints
(1)–(4).

The solution of this convex program gives the maximum
achievable utility over all sources if traffic is allowed to follow
multiple routes between source and destination. Our main ob-
jective in this paper is to devise a decentralized control system
at routers and sources to achieve this optimum.

A second problem can be formulated replacing capacity con-
straints with barrier functions that specify the congestion
cost at the link. We assume is increasing and convex in

.
Problem 2 (SURPLUS): Maximize

(5)

subject to flow balance constraints (1)–(4).
In economic terms, above is the aggregate surplus (see,

e.g., [16]). As a special case when demand is inelastic, it in-
cludes the optimal routing problem of minimizing for
a fixed traffic matrix. This was the problem studied in [7] for
interpreted as delay; for that case, the generalization (5) was de-
veloped in [25].

B. Control Variables

By appropriate redefinition of the variables, the above prob-
lems can be shown to be equivalent to those considered in [10],
[12], and [23] in terms of rates per route or path across the net-
work. As argued before, for reasons of scalability as well as pre-
serving layer separation, we prefer to use the following set of
variables:

• The transport layer at sources should control only the total
amount of rate they input to the network, similar to
current TCP congestion control.

• As in IP, the network layer at routers makes forwarding de-
cisions based on destination; the only change is that mul-
tiple next hops by destination can be used. The variable
controls the fraction of traffic to destination that uses out-
going link .

Specifically, we can impose the split in each commodity

(6)

or alternatively the weaker condition

(7)

The latter imposes the split on total rates per destination, the
factor that impacts congestion, but allows more freedom in
routing individual flows. Indeed, it may be advantageous in
practice to keep individual flows single-path, still achieving or
(or approximating) the overall multipath traffic split. We will
mostly use (6) for simplicity, but the theory extends to (7).

It is possible to infer from (6) an overall relationship between
the vector of input source rates and the vector

of total link rates. Given a set of split ratios ,
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under some mild assumptions on connectivity, the relationship
follows from (1)–(4) and (6) (see Appendix A). The

routing matrix generalizes the single-path routing case,
where it is simply a matrix of zeros and ones.

If is fixed, replacing the constraints in Problem 1 and
Problem 2 by the relationship yields the optimiza-
tion problems over input rates considered in the congestion
control literature [10], [22], generalized to fixed multipath
routes. Our main concern, however, is to use the routing splits
as variables and control them to solve the original problems
with unconstrained routing.

C. Feedback Signals

As in congestion control, the primary feedback signal is a
congestion measure or price for each link ; we assume

depends only the total traffic ; there is no “service differen-
tiation” between commodities. Later on, we discuss choices on
how to define this price.

In our multipath setting, different paths from a node to des-
tination will have their own congestion prices at any time. We
do not require routers to be aware of such paths; rather, they
can work with local and neighbor information to infer their
price-to-destination , , representing the average price
of sending packets from node to destination , using the cur-
rent routing patterns. Node prices are thus defined to satisfy

(8)

Given link prices , under mild conditions, there exist unique
solutions to the above recursive equations. More details are
given in Appendix A. At the source node of commodity , the
node price summarizes the congestion cost of the network. We
denote it by

To determine the in a decentralized network requires com-
munication across neighboring nodes and recursive updates that
take time to converge. We do not model these dynamics; further
comments are given in Section V. We are also not modeling the
delays incurred in propagation of rates through the network and
of congestion prices in feedback, considered in, e.g., [15] and
[22] for congestion control. This simplification is done for math-
ematical tractability. As partial justification, we mention that
our main focus is the much slower time-scale in which routing
adaptation can take place.

Remark: Congestion prices from node to destination have
also been considered in the literature on “backpressure” sched-
uling in wireless networks (e.g., [13], [4]), motivated by the
Lagrangian dual of Problem 1 with respect to the node bal-
ance constraints. In fact, we show in Appendix B that, under
our proposed control, the equilibrium values of node prices
correspond to these Lagrange multipliers. The dynamics of
both proposals are, however, very different, as are the resulting
implementations. In the backpressure work, is dynamically
controlled, and routing is deduced from it, by scheduling at
each time slot the commodity with the highest price differen-
tial. Around equilibrium, these price differentials will equalize,

and routing “chatters” between paths; the traffic split is never
explicitly found—it can only be interpreted in a mean sense
as emerging from such fluctuations. In this paper, we take,
in a sense, the opposite path: The routing splits will be
explicitly controlled as a “primal” variable, and the evolution
of will follow from (8) as a consequence. This induces a
different dynamics of these prices and also enables different
forwarding implementations, as discussed later.

D. Basic Relationships

The following basic lemma relates the price and flow vari-
ables defined so far.

Lemma 1: For each commodity ,

(9)

Proof: We write the sequence of identities

The first identity is from (8), the second uses (6); the third step
follows by grouping terms by the end-nodes of the links, and the
last step uses (2). Now canceling node terms, only the source
term remains on the left-hand side.

The following identity is obtained by aggregating over the
various commodities:

(10)

In an analogous way, one can establish the following dynamic
relationship, which holds regardless of the chosen control laws,
to be defined later:

(11)

III. GRADIENT ROUTE ADAPTATION WITH

CONGESTION CONTROL

Having defined the controlled variables (input rates and traffic
splits) and the feedback variables (link and node prices), what
remains is to choose the control laws that map between them to
run at sources and routers.

Focusing on a router , for each , we must define a control
law for the vector of routing splits as a
function of

(12)
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the vector of prices to destination seen from node . Both vec-
tors have the dimension of , the number of outgoing links at
, and belongs to the unit simplex

(13)

Our first choice for the control of is to follow the negative
price gradient: to transfer traffic in gradual steps from more ex-
pensive to cheaper routes. This includes the proposal from [7]
when prices are interpreted as marginal costs, as seen below.
In continuous time, we impose the following conditions on the
derivative :

1) is negatively correlated with , i.e.,

(14)

with equality only if .
2) is constrained so that the trajectory remains on the

simplex. In particular, it must satisfy

(15)

3) if and only if for each

either or and (16)

In other words, split ratios per node only settle when
prices of routes that carry traffic have equalized (and are
thus equal to the node price) and the remaining unused
routes have higher price.

There may be more than one choice of control satisfying these
restrictions. A specific one is

(17)

where and denotes a projection operation required
to keep the trajectory within the simplex . In the special case
when is interior to ( ), the projection must
simply enforce (15), so in this case it is given by the matrix

(18)

where the identity matrix and the vector of ones have the
dimension . applied to a vector subtracts the mean from
each component. Therefore, for an interior , (17) is simply

namely, increase routing in links with
lower-than-average prices, and decrease it in the rest.

For on the boundary of , we want to allow the motion
of away from zero (to explore new routes), but restrict it to
be nonnegative so as to remain in the simplex . Therefore, if
the drift vector points outside of , we will replace it by its
best approximation within . We formalize this as follows: For

, let denote the point in closest to , i.e.,

Now define

(19)

Since the boundary of is piecewise linear, the limit in (19) is
in fact achieved for small enough , for which
becomes the point in the simplex closest to .

Remark: Adapting routes gradually means routing loops
could appear during a transient phase. To avoid this, a blocking
method was proposed in [7], which checks information on
prices further downstream before initiating transmission to a
neighbor. Details on this procedure are given in Section V.
Blocking still respects the first two conditions above, but
weakens the third. While (16) is still sufficient for ,
the necessity is no longer true: A certain route may remain
blocked despite being cheaper.

We will now combine the route adaptation defined above,
with two choices of congestion control algorithms studied in the
literature. We use the notation

if or
otherwise.

A. Primal Congestion Control and Global Stability

Consider the scenario in which source rates are updated as in
[10] by the primal equations

(20)

where , and link prices follow the static law

(21)

i.e., the price is the marginal cost of the link.
The state variables of the system are the source rates and node

split ratios. We study the asymptotic behavior.
Theorem 2: Under (20) and (21) and assumptions 1)-3) on the

control of , the system rates converge globally to a solution of
Problem 2.

Proof: We take the derivative of the surplus along system
trajectories

(22)

where we have invoked (20), (21), and (11), added over . Both
of the above sums are nonnegative, using (14); so , the
surplus increases along trajectories. While may occur
outside equilibrium, a careful application of Lasalle’s invariance
principle implies the stability result (see Appendix B).
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B. Dual Congestion Control

We now consider the “dual” congestion control algorithm first
proposed in [14], where link prices follow

(23)

Based on the received price , the sources choose a rate that
instantaneously maximizes , i.e.,
satisfying

(24)

Proposition 3: Consider an equilibrium of the dynamics (23),
with rates satisfying (24) and routing splits satisfying the
equilibrium condition (16). Then, the rates are a solution to
Problem 1.

Proof: See Appendix B.
Remark: The equilibrium is not necessarily unique, but all

equilibria are optimal.
Can we claim convergence to equilibrium under the chosen

dynamics? This fact is more delicate than in the primal case.
To gain insight, consider the restriction of Problem 1 to fixed
routing splits

(25)
Introduce the Lagrangian of this problem with respect to the
capacity constraints, and use (10)

(26)

Its maximum over for fixed and is achieved precisely by
the source law (24); let us denote it by

From convex duality, the minimum of the above over is
, so the solution to Problem 1 is

(27)

a saddle point of the function . From this perspective, we
can give an interpretation for the dual dynamics. Applying the
envelope theorem (see [16]), the partial derivatives of can be
computed on the Lagrangian , at the maximizing , leading to

We omit the derivation of the last identity, which follows from
(8) and a similar argument to Lemma 1. The implication is that
the dynamics (23) is a gradient projection algorithm for the min-
imization over in (27), whereas from (14), we have

for each

where denotes Euclidean inner product. Thus, moves
in the direction of the maximization in (27). The fact that both
controls produce opposite effects on makes it difficult to
conclude something about the joint dynamics. In [18], we per-
formed a two-time-scale analysis, obtaining convergence results
under the assumption that varies much more slowly than . It
is, unfortunately, not true that the dynamics will make the equi-
librium stable when the separation of time-scales is not ideal, as
assumed in [18].

Example 1: Consider a simple network with two nodes
(source and destination) and two parallel links of capacity

, . Each link generates a price according to (23). The
traffic split can be described in this case by a single parameter

, with . An update that follows the negative
price gradient has the form

with saturation to the interval [0, 1]. The equilibrium is
, , with depending on

the chosen utility function. To simplify the analysis, let us tem-
porarily replace the source by an inelastic one with rate .
Also, consider a trajectory for which the saturation constraints
on , , remain inactive. Denoting ,

, the dynamics becomes linear

(28)

The eigenvalues of the preceding matrix are 0 and
. The 0 eigenvalue is a consequence of

having introduced the inelastic source, which makes the
equilibrium price indeterminate. The purely imaginary mode is
of more concern: It reveals a harmonic oscillation of the price
and split dynamics, which could have as large an amplitude as
the saturation constraints allow. Essentially, we are seeing the
“route flaps” of congestion-based single-path routing turning
up again, in a smoother form, in our multipath algorithm.

If the elastic source is introduced back in the problem, the
dynamics is no longer linear. Nevertheless, we can say the fol-
lowing: For the important case where (i.e., price rep-
resents queueing delay), the linearization around equilibrium re-
places the mode at zero with a stable eigenvalue, but the imag-
inary modes remain. Moreover, through a Lyapunov analysis
similar to Proposition 4, we find that asymptotically the source
rate must converge to as above, with dynamics of and
approaching the one in (28), and thus exhibiting possibly large
oscillations.

Remark: The above example raises a modeling question that
has been a subject of debate. Should delay be modeled as a static
function of link rate, or by the “fluid tank” model of (23) (with

)? The former follows from classical queueing theory
in steady state; the latter captures the transient dynamics, but
not the stochastic effects. In this example, this question has cen-
tral importance: if the static model is adopted, as is done in [1],
[7], and [25], then Theorem 2 implies asymptotic convergence
of the traffic splits. If, instead, the model (23) holds true, the
above analysis predicts oscillations. Which is correct? We will
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see through packet simulations in Section VI that oscillations
are indeed observed, giving support to the second model, and
indicating that the stability of delay-based multipath routing re-
quires a different approach.

IV. ANTICIPATIVE CONTROL OF TRAFFIC SPLITS

AND ITS STABILITY

The preceding example reveals a limitation with the adapta-
tion of multipath routing based on the gradient of congestion
price. Oscillatory instabilities may appear, and these are not
avoided by making the adaptation “slow”: If we reduce the pa-
rameter , the frequency of oscillation is reduced, but the oscil-
lations remain. In practice, the traffic slowly drifts between one
link and the other and back, but does not settle in the right place.

In control terms, the culprit is the second-order dynamics.
The ’s integrate the price changes, and these in turn integrate
the variations in link rates, functions of . This amounts to a
mass-spring kind of dynamics with no damping. How, then, do
we introduce damping in this loop? A classical idea is to use
“proportional-derivative” control,1 i.e., to introduce some antic-
ipation of future prices in the control of routing splits. We will
thus replace (17) by

(29)

Remarks:
• The equilibrium properties of the control law remain un-

changed since the derivative terms vanish at equilibrium. In
particular, if we combine this control with dual congestion
control, it is still true through Proposition 3 that an equilib-
rium point must be a solution to the WELFARE problem.

• The fact that derivatives appear on both sides of (29) makes
it a differential equation in implicit form. In particular, the
price derivatives that appear in will in turn depend
on traffic split derivatives through (8). The question arises
as to whether this equation is nonsingular—i.e., if it can
be solved into an ordinary differential equation (ODE) at
all times. A partial answer is the following: If the routing
remains loop-free at all times, then is only a function
of for nodes downstream of ; by successive sub-
stitutions, we can turn this into an ODE. This loop-free
condition will automatically be satisfied by local dynamics
around equilibrium, which is optimal (hence, loop-free), or
by the global dynamics if the blocking method of [7] de-
scribed below is included as a modification to (29).

We now study the behavior of the above anticipatory control
of routes in combination with dual congestion control. We first
consider a simple case, slightly more general than the example:
a network of parallel links between a single source and des-
tination. Let

...
...

...
...

1We acknowledge discussions with J. Shamma, who has recently promoted
the use of derivative action in dynamic games [20].

be the vectors of link capacities, rates, prices and split ratios,
and the scalar source variables. We have

(30)

where is the decreasing demand curve determined by (24).
The equilibrium of (23), (24), and (29) is

(31)

Proposition 4: The equilibrium (31) is locally asymptotically
stable under the dynamics (23), (24), and (29).

Before tackling the proof, we write the dynamics in incre-
mental variables around equilibrium, and so on.
Without loss of generality, take and small under
which no price saturation occurs. Then

(32)

If is interior to the unit simplex (which happens locally
since is interior), the projections in (29) are simply given by
the matrix in (18). Also, note , so we locally rewrite
(29) as

(33)

Also, noting that and , (30) yields

(34)

Proof of Proposition 4: Define the Lyapunov function can-
didate , vanishing only at equilibrium

Here, is the Euclidean norm. The derivative of
is equal to from (33); therefore, the first term in has
derivative

Note for the above that . Now, using (32), the deriva-
tive of the second term in is

Combining both terms and using (34) yields

Now, since the demand curve is decreasing, we have

so decreases along trajectories.
The Lasalle principle [11] implies convergence to an invariant

set where . This implies and . Also, due
to the first term in , we have , which means is
parallel to , . However, since , we have
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. Finally, (32) implies , so the invariant set is the
equilibrium.

Remarks:
• If we set in the above, i.e., there is no anticipatory

term in the dynamics of , we still must have convergence
to , as claimed in the example above for

; however, there is no guarantee that prices and ’s will
converge.

• The incremental equations (32)–(34) are not linearizations;
they are exact as long as prices remain positive and is
interior to the simplex. Therefore, the Lyapunov proof ex-
tends to show that the basin of attraction of the equilib-
rium includes any sublevel set of that does not
touch these boundaries. If the boundaries are reached, the
resulting hybrid dynamics are more involved, with pos-
sible discontinuities of , which makes it difficult to give a
global result. For more extensive treatment of these global
stability issues, we refer to [17].

We now state a local dynamic stability result for a general
network with arbitrary topology and multiple commodities.

Theorem 5: For any network, under the congestion control
(23), (24), and (29), trajectories converge locally to an equilib-
rium (optimum of Problem 1).

The proof is given in Appendix C.

V. IMPLEMENTATION

The theory described in the previous sections can be taken
as a basis for more than one implementation, depending on
the choice of the link congestion price, the source utility func-
tion, and the method for sharing congestion information be-
tween routers and with traffic sources. In this section, we dis-
cuss these issues and describe one such design.

A. Discussion

1) Routing Protocol and Node Price Formation: Prevailing
methods for computing single-path routing tables in IP routers
are shortest-path algorithms, with hop-count the default metric.
For this computation, routers disseminate metric information,
either globally (in link-state protocols such as OSPF) or to
neighbors (in distance-vector protocols such as RIP); see, e.g.,
[19]. The latter alternative is very well suited for our purposes
by making the node price the metric used in announcements.
Router generates prices of its own outgoing links and
receives announcements of downstream prices , so it can pe-
riodically update to the right-hand side of (8). This iteration
converges under the same conditions that ensure node prices
are well defined, as shown in Appendix A.

2) Update of Split Ratios, Blocking, and Forwarding: The
control of can follow either the gradient (17) or an-
ticipatory (29) dynamics; we will favor the second. We now
discuss how to avoid the transient formation of routing loops.
Thinking of the node price as a potential, traffic should tend
to flow “downhill” and will do so at equilibrium. Node will
not permanently use link if . However, since
our dynamics of are continuous, the above improper routing
could occur transitorily, and with it, routing loops. To avoid
them, [7] proposed to start from a loop-free configuration and

to block the start of the use of a new link if there is an improper
routing in its downstream path. This is signaled through a flag
that accompanies routing announcements (see details below).

Having explicit split variables allows for fine-grained
multipath forwarding, tracking these proportions at the packet
time-scale. In contrast, the backpressure approaches [4], [13]
only change paths when price changes are observed, inherently
a slower-scale phenomenon, implying, in practice, route oscil-
lations.

3) Communication of Prices From Routers to Sources: A
major point of discussion among congestion control implemen-
tations is whether it is necessary to introduce explicit congestion
signals between routers and sources or if it suffices to rely on im-
plicit measures that can be estimated by the transport layer.

To address this issue for the multipath algorithm, it is impor-
tant to consider the time-scales involved. TCP sources must con-
trol congestion quickly, faster than routing updates; hence, it is
not reasonable to rely only on explicit communication of node
prices, which may take time to converge to the solution of (8).
On the other hand, a source can estimate its average conges-
tion price over the routes it is using, based on the ACK stream
as in single-path routing, for certain price signals: loss or ECN
marking probability or queueing delay. In this way, the source
could estimate its price faster than the time it takes the access
router to make it explicit.

A proposal based on loss or ECN marking was outlined in
[18]. From here on, we focus on queuing delay as a congestion
measure. If is the delay of each link’s queue, then in (8)
is the average queueing delay between node and destination,
and at the source is the average queueing delay experienced
by packets over all paths. What sources can explicitly measure
is the average round-trip time of their packets, ,
where is the propagation/processing delay averaged over all
routes. This “BaseRTT” does not coincide with the minimum
observed RTT used in single-path settings. Therefore, to esti-
mate , we will rely on slow time-scale explicit signaling, as
explained below.

B. Details and ns2 Implementation

1) Multipath Distance Vector Protocol: This protocol is
based on the Bellman-Ford distance vector algorithm and its
most well-known implementation, RIP (see e.g., [19]). The
protocol learns routes to an IP destination address from its
own locally connected networks and from routes received
from neighboring routers. However, as compared to RIP, our
multipath protocol does not discard a route if it has a shorter
(or cheaper) alternative; rather, it maintains in its routing table
all possible next hops for a given destination. Each row in the
routing table is accompanied with its metric, ,
and its routing split variable, . Here, is the queueing
delay of the link, measured as the link queue divided by its
capacity, and is the metric learned from the downstream
router.

When the algorithm starts, it learns the routes from directly
connected destinations and assigns them cost . Since
these are the first routes to be learned, they are assigned

; all traffic for this destination will initially be routed through
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this path. Analogously, every time a new destination is discov-
ered, it is assigned ; on the other hand, new routes
learned for an already-known destination are assigned .

Routing announcements of the form (destination, metric,
flag) are sent from each node to its neighbors. These are sent
every seconds, or also asynchronously if the node has re-
ceived a notification that changes its routing table or metric. The
first two fields are similar to RIP’s; the metric is the weighted
average from (8). The additional flag indicates whether this
is a proper or improper route, used for blocking loops. A route
is announced as improper if at least one of the next hops
with satisfies either: 1) ; or 2) node ’s last
announcement had the improper flag on.

Upon reception of an announcement from node with the
improper flag on, if the current , node will block
node for this (denoted ) and forbid the dynamics
from increasing this component.

2) Split Updates and Projections: Updates to are made
periodically, with period , according to

(35)

This amounts to a discretization of (29), with an additional pro-
jection that implements blocking. We now describe how such
projections are computed. Given a subset of next-hops and a
drift vector , let

otherwise.
(36)

Here, is the average of . Thus, prevents
motion in all components and keeps the overall average
motion at zero. To implement blocking, we simply set .
We can also implement this way—only, in this case, must
be constructed iteratively.

We use as an auxiliary set for this construction.
1) Set and . Note that the first implies

as in (18).
2) Update .
3) Set .
4) If , repeat from step 2; otherwise, finish.

Note that increases with each iteration; the coordinates in
, removed from the average, are smaller than the previous av-

erage. When no more coordinates can be removed, the set
contains all coordinates of that take outside , consis-
tently with the definition of .

Finally, due to the finite step used in (35), the possibility exists
that could escape through another boundary of . If this
happens, we adjust step size down so that reaches exactly
that boundary.

3) Forwarding: To forward packets in a way that matches
in the mean, we add the auxiliary variable , updated

after each packet forwarding by

with and for the chosen link, for the
rest. This assumes equal-size packets; otherwise, weights can be
added. Thus, tracks the ratio between the actual rate fraction
through link and . Forwarding decisions are made by
choosing the link with minimum .

4) Sources: Tracking of , TCP-FAST Modifications: Asso-
ciated with source nodes are TCP-FAST agents. These estimate
average RTT and BaseRTT by running, for each received ACK,
the updates

(37)

(38)

The RTT averaging (37) is standard; the parameter can be
made inversely proportional to the current window size. This
makes the time constant of the filter correspond to a certain
number of RTTs.

Equation (38) for is modified from FAST; it is not
based on the minimum RTT. The reason is that, as mentioned
above, must track the average propagation delay
across all used paths. The idea of (38) is to use prices , ex-
plicitly communicated at the slower routing time-scale, by the
IP agent colocated with the source. These occasional messages
indicate the correct average queueing delay (congestion price);
by lowpass filtering the difference , with param-
eter , we are able to track the slow variations of
in the variable . Then, the instantaneous difference

used by TCP-FAST will track the fast vari-
ations of the source congestion price .

Another modification required on TCP-FAST is that, consis-
tently with multipath routing, it no longer makes sense to con-
sider the ordering of packet arrivals in decisions about conges-
tion control. In particular, the duplicate ACK feature should
be removed, and RTT averaging should be performed on all
packets, not just those that come in order.

VI. SIMULATIONS

A. Gradient versus Anticipatory Control

Our first simulation is intended to support our discussion on
the need for anticipatory control of traffic splits. We simulate
a simple network with two parallel routes between source and
destination, with respective bottlenecks of 50 and 100 Mbps. A
single TCP-FAST source uses the network, and the input router
performs the two-way split. Fig. 1 shows the behavior of the
prices (queueing delays) on both paths for the cases (no
derivative action) and . In both cases, the input rate stabi-
lizes to 150 Mbps, but in the absence of derivative action, we ob-
serve oscillatory instabilities, consistent with the second-order
dynamic model discussed in Section III-C. Once we introduce
enough damping in the system, the queues settle down around
a common equilibrium price.

B. Dynamic Example: 4-Node Topology

We now turn to a richer example that exhibits various fea-
tures of the protocol. The topology is depicted in Fig. 2. There
are three groups (Grp 0, Grp 1, and Grp 2) of sources at nodes 0,
1, and 2 with 5, 10, and 10 TCP-FAST connections each, with a
common destination at node 3 and parameters

. This parameter represents the number of packets to
be stored in network queues in equilibrium. All links have the
same capacity (1 Gbps) and propagation delay of 10 ms. Ca-
pacities and delays are the same in the reverse path. Packet size
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Fig. 1. Dynamics of multipath routing.

Fig. 2. Simulated network.

Fig. 3. Split ratios and prices from node 0.

is 1040 bytes. The following parameters were used in routers:
, , ms, ms. In TCP sources, we

Fig. 4. Split ratios and prices from node 1.

Fig. 5. Split ratios and prices from node 2.

used , for the averaging of RTT
and BaseRTT.

The simulation results are depicted in Figs. 3–6. Figs. 3–5
contain split ratios and metrics (prices) for nodes 0, 1, and 2.
Fig. 6 contains for all source groups.

In the initialization process, all nodes (0,1,2) discover first the
direct route to destination node 3. Grp 0 starts first, and node 0
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Fig. 6. Source rates and average queueing delays.

begins sending all traffic directly to node 3. This is also the de-
fault route in single-path protocols since it is the shortest path.
When link (0,3) saturates, node 0 starts splitting the rate grad-
ually between the other two paths, and the TCP-FAST sources
in Grp 0 react to the lowering in the average queueing delay
by increasing the rate. After 18 s, node 0 reaches equilibrium

, and Grp 0 sources
reach their fair rate Mbps.

At 20 s, Grp 1 starts sending traffic through link (1,3), which
becomes more congested, increasing the metric seen by
node 0 and making it eventually stop sending traffic through link
(0,1). Notice that until this happens, node 1 cannot start using
link (1,0), although it sees a cheaper price through that link.
Only when node 0 has completed its transfer of routing to links
(0,2) and (0,3), node 1 unblocks the cheaper route (1,0), after
which the system reaches a new equilibrium ,

and
Mbps.

After 60 s, Grp 2 sources start sending traffic from node 2 to
destination 3. This reactivates the routing algorithm at node 0
and makes it change its routing configuration to
in spite of the fact that the link (0,3) is not the cheapest (node 1
is blocked). After node 0 reaches its new equilibrium, both
nodes 1 and 2 start changing their splits until they get to

, , and
Mbps.

Finally, at 100 s, Grp 0 disconnects its TCPs and the system
reaches the last equilibrium shown in the simulations. Node 0
stays at , sending all traffic directly to desti-
nation 3; nodes 1 and 2 increase the traffic fractions sent to

node 0, reaching . All flows achieve a rate
of Mbps.

VII. CONCLUSION AND FUTURE WORK

We have proposed a framework in which multipath routing
and congestion control work in unison to pursue a common ob-
jective: the maximization of aggregate utility or surplus over the
network. The control of input rates and routing splits is decen-
tralized, relying on a common congestion “currency” for its de-
cisions. We have studied mathematically the equilibrium and
dynamic properties of various control laws; in particular, we
have proposed a new anticipatory control of traffic splits that
stabilizes the maximum welfare allocation when combined with
dual congestion control.

The theory has assumed persistent TCP flows. Given the rel-
atively slow dynamics of routing, it is important to extend this
work to consider the effect of finite TCP flows that come in and
out of the network. This remains open for future research. An-
other interesting future topic is combining the above control of
network and transport layers with the lower layers, particularly
for wireless networks, possibly offering alternatives to the back-
pressure scheduling approach [13], [4].

We have presented a packet implementation based on
queueing delay as a congestion price; routers measure local
prices and exchange information with neighbors, following
a multipath variant of a distance-vector routing protocol.
Fast-TCP sources estimate this delay from their RTT measure-
ments in real time, calibrating their propagation delay through
periodic interactions with the IP layer. Our ns2 simulations
verify the expected behavior from the theory. One could alter-
natively consider implementations based on loss or marking as
a congestion price; we will explore these in future work.

APPENDIX A
SPLIT RATIOS AND NODE PRICES

In this Appendix, we study the recursive relationships that
define node prices in terms of split ratios, reproduced here for
convenience (recall )

(39)

We analyze first a single destination , taken for simplicity to
be node , and define the matrices

...
...

. . .
...

Here, we dropped the superscript from the variables , and
defined these for every pair of nodes; if there is no
link ; in particular, the diagonal of is zero. The identity

expresses the balance of mass per node;
here, is the vector of ones of length . We also define matrix

of dimensions , where

if
otherwise.
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With this notation, the node price equations (39) can be written
in vector form as

where is the vector , and is the vector We
will study conditions under which the above equations can be
solved for

(40)

a vector with nonnegative elements. The most useful case is
when the routing contains no loops.

Proposition 6: Assume there is no closed loop with
in all its links. Then, the matrix is nilpotent, .

Proof: Think of as the probability that a packet starting
at arrives at after one hop. Assuming independent routing
decisions, the probability that the packet arrives in after two
hops is , the element of the matrix . Anal-
ogously, the element of is the probability that the
packet arrives at after hops. If this probability were
positive, it would imply the packet could stay with positive prob-
ability in the set of nodes for hops; since
staying in that set requires looping, this implies positive proba-
bility of a loop, a contradiction.

As a consequence, if the routing disallows loops, then

therefore, there exist nonnegative prices satisfying (39). Fur-
thermore, the iteration

(41)

which represents the price propagation, converges in at most
steps.

In [7], a more general argument is given that implies
provided there is a path of positive probability from

any node to destination. Under these conditions, satisfying
(39) is uniquely defined; in this general case, the convergence
of (41) is asymptotic.

An additional use of the matrix notation is to make explicit
the relationship between node and link variables for fixed
routing. For a commodity with source node and desti-
nation , let

be the vector of rates of commodity entering all nodes except
. If is the vector of link rates, with links ordered as before,

then the split equation (6) is represented in matrix form by

Also, the node balance equations at all nodes except can be
represented by

where is the canonical basis vector at the source node.
Under the same conditions as before on the routing, the previous
equation can be solved for , yielding

The above procedure can clearly be generalized to any com-
modity, with destination not necessarily equal to , by appro-
priate definition of the matrices , , which are destination-de-
pendent. We obtain in general

with a column vector. Adding over , we have

We thus have an expression for the routing matrix that
maps source to link rates for fixed . We can also describe, with
the same matrix, the dual relationship between link and source
prices. This is done by extending (40) to any destination and
picking the source node price out of the vector of node prices

From here, we have the global relationship

between the link prices and the vector of source prices, which
extends the single-path case [15], [22].

We conclude the Appendix with a proposition to be used
below, which refers to the gradient price dynamics.

Proposition 7: Suppose are constant. If satisfies (14)
with specified by (39), then converges asymptotically to an
equilibrium value.

Proof: Taking a derivative in (39) for constant (drop-
ping the superscript ), we have

Denoting the first term by , which satisfies due to
(14), we write in matrix form Under the previous
conditions for , we solve

Since is lower bounded, we conclude that it converges to an
equilibrium.

APPENDIX B
GLOBAL OPTIMA

We characterize optimality conditions in our optimization
problems using Lagrangian duality and use this to establish
optimality of equilibria.
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SURPLUS Problem: We start with Problem 2, rewriting it
as follows:

(42)

in the variables , and , subject
to the constraints for every , and

(43)

We introduce the Lagrangian

with Lagrange multipliers , . From convex
duality, the optimization

will give the same result as Problem 2. The variables are
at a saddle point of the dual if they satisfy (43), and for each ,
we have

or and (44)

or

(45)

or and

(46)

where is evaluated at .
Primal Stability Proof: We complete here the proof of The-

orem 2. Invoking the Lasalle invariance principle [11], the state
trajectories will converge to an invariant set inside

. We show that this such trajectory achieves optimal rates.
In reference to (22), we see that implies (24) for each

commodity . Also, from (22) and the restriction for equality in
(14), for each , , we have

either or (47)

Consider a trajectory satisfying . In particular,
from (20), the external rate is constant, and due to (47), we see
that the only destinations for which the split ratios are allowed
to vary are those for which the node is carrying no traffic. This
means that while , all link flows are constant, and thus by
(21), so are link prices . Node prices can continue to vary
at nodes that carry no destination traffic, as studied in Proposi-
tion 7.

The dynamics indeed allows for to hold for a finite
interval of time, during which all link rates are constant, and

come out of this state later when the evolving node prices pro-
vide a cheaper, currently unused route. However, for a trajectory
moving entirely within the set , as stipulated in the Lasalle
principle, link rates and node prices must remain
constant for all time. Invoking Proposition 7, denote

For all nodes that receive traffic , we have the second
alternative in (47), and so (16) implies conditions (45) and (46).
Therefore, we are asymptotically at an optimum of Problem 2.

Remark: If blocking is included in the dynamics, (16) need
not apply at any given time. However, it is not difficult to see
that in the limit for under the conditions of Proposi-
tion 7, there can be no improper routing and thus no blocking.
Therefore, the conditions (16) will hold for the asymptotic ,
as required.

WELFARE Problem: Moving now to Problem 1, we can
use the same set of variables , , and write it as

and for each

Its Lagrangian has now additional multipliers for the
capacity constraints

Writing the saddle-point conditions for this problem gives equa-
tions analogous to (44)–(46), except that we substitute by ,
and we have the additional condition

or and (48)

Proof of Proposition 3: At an equilibrium of the dual, we
have

or and (49)

together with (24), and (16). Taking , and ,
we see these rates and multipliers are a saddle point of ,
therefore an optimum of the system problem.

APPENDIX C
STABILITY OF ANTICIPATORY CONTROL

We study the dual congestion control (23) and (24) with an-
ticipatory control of routes (29) locally around an equilibrium
point (denoted by superscript ). Let be
the set of neighbors used by node to route to in equilibrium.
For simplicity, assume
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i.e., the remaining links are strictly more expensive. Then, for
sufficiently small deviations from equilibrium prices, only links
in will be used; denote by

the vectors of splits, link prices, and downstream neighbor
prices of this reduced dimensionality at node . Note the distinc-
tion between and the scalar node price ;
by analogous reasoning as in (34), we have the incremental
relationship

(50)

The equilibrium is interior to the simplex of this dimen-
sion. Thus, the projection in (29) is locally achieved by a matrix

analogous to in (18), which projects on for of
the simplex dimension.

(51)

Denote also by the total rate destined to
reaching node , and by the corresponding vector of
rates over links in . We have the incremental relationship

(52)

Note that the above relationship only requires (7), the weaker
assumption on splitting by destination instead of flow. This fact
implies that the proof below readily extends to that situation.

Proof of Theorem 5: Generalizing Proposition 4, define for
node the Lyapunov term

Differentiating the second term and using (23) yields

The inequality is due to the case where the price projection in
(23) is active. Differentiating also the first term and using (51)
leads to

(53)

Focus on the second line of (53); we transform each term for
fixed using (52) and (50)

(54)

Now, define the Lyapunov function candidate .
Clearly, , and implies for every
link; under analogous conditions as in Appendix A, the recur-
sive equation (50) leads to the unique solution . The
first term in then implies . Therefore, vanishes
only at equilibrium. Compute its derivative along trajectories

(55)

Now, write

(56)

The third step above follows from noticing that the (incre-
mental) total rate entering node destined to is the sum of
components from inside and outside the network. Substituting
(56) in the term in braces of (55), after cancellations, we have
the overall expression

From the demand curve of each commodity , we have
so decreases along trajectories. Once more,

the Lasalle principle implies that trajectories converge to an
invariant set within . This condition implies ,

, and for each , . From the latter,
and the routing is constant in time; therefore, so are

the link rates since the input rates are fixed. These constant link
rates cannot exceed capacity, or prices would grow without
bound, contradicting the fact that is constant for all .
Therefore, prices must also be at an equilibrium. The invariant
trajectories inside are equilibrium points.
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