
Optimal congestion control with multipath
routing using TCP-FAST and a variant of RIP

Enrique Mallada and Fernando Paganini

Universidad ORT
Montevideo, Uruguay

Abstract. This paper discusses an optimization-based approach for con-
gestion control together with multipath routing in a TCP/IP network.
In recent research we have shown how natural optimization problems
for resource allocation can be solved in decentralized way across a net-
work, by traffic sources adapting their rates and routers adapting their
traffic splits, all using a common congestion measure. We present here
a concrete implementation of such algorithms, based on queueing delay
as congestion price. We use TCP-FAST for congestion control, and de-
velop a multipath variant of the distance vector routing protocol RIP.
We demonstrate through ns2-simulations the collective behavior of the
system, in particular that it reaches the higher transfer rates available
through multiple routes.

1 Introduction

The use of multiple paths between a source and destination of traffic is a natural
choice to enhance the performance of a network, especially for bulk transfers
that care mainly about the overall throughput. Flow could stream over many
channel paths inside the network, adapting to whatever capacity is available at
the moment. This ideal calls, of course, for a more active role for the network
layer than that of current practice. In the prevailing situation, IP routing is
insensitive to congestion and the only real-time control is done by the transport
layer, designed to be single path; even if multiple TCP streams are used, there
is limited control from the source as to how traffic travels inside the network.
To fully explore the multipath options from the source (or an overlay at the
edge of the network) as recently investigated in [7, 4], is not scalable given the
exponential number of end-to-end paths.

A scalable alternative requires participation of the routers. Two main ar-
guments against involving routers in real-time adaptation are (i) to keep them
simple, and (ii) that congestion-based adaptation leads to instabilities such as
route flaps. Tackling the second one first, it is well recognized that the main
reason for such flaps is the use of single path routing, in which large bulks of
traffic are suddenly switched. For multipath routing, stable methods based on
gradual adaptation of the split of traffic have been known for a long time [3]. A
recent proposal along these lines is [5], which uses a heuristic rule based on back-
pressure signals to adapt routing splits. Other related work for wireless networks
is [1, 12].



2 Enrique Mallada and Fernando Paganini

In [9] we proposed a way to combine multipath adaptive routing with the
congestion control of TCP. We showed how to formulate global resource alloca-
tion optimization problems, and how to design local, scalable laws at sources and
routers to solve them. In particular, we were able to give theoretical proofs of
global convergence for arbitrary network topologies. These results are briefly re-
viewed in Section 2. Key to the overall solution is the propagation of a universal
“congestion price” across the network.

The purpose of this paper is to develop an implementation of the ideas in
[9]. We take as congestion price the queueing delay, which TCP variants such as
FAST [6] estimate and use for congestion control, and routers can locally mea-
sure. This brings us back to the first point raised above: how complicated would
it be for an IP router to perform multipath routing, and to handle and propa-
gate these congestion signals? In Section 3 we show that the multipath routing
algorithms of [9] fit well with distance vector routing protocols such as RIP (see
[10]); we thus develop an enhancement of RIP to perform the necessary tasks. In
Section 4 we present simulation work in ns2 to demonstrate the feasibility and
properties of this implementation. We use the ns2 distribution of TCP-FAST
[2], and developed our variant on the ns2 version of RIP. Conclusions are given
in Section 5.

2 Combined congestion control and multipath routing

This section summarizes the ideas of [9] as to how to combine methods of con-
gestion control with multipath routing, and the theory relating these algorithms
to optimization.

2.1 Flow variables

Consider a set of nodes N , indexed by i, j, connected by a set of directed links
L, each denoted by l or by (i, j). The network supports various flows indexed
by k ∈ K, between a source node s(k) and a destination node d(k), following
possibly multiple paths. We introduce the following variables: xk, external rate
entering the network at the source; yk

l , rate of flow k through link l; xk
i , total rate

of flow k coming into node i. These quantities are subject to the natural flow-
balance constraints. The total flow on link l is denoted by yl, and its capacity
by cl.

2.2 Multipath Routing

The router at node i ∈ N must decide on which of its outgoing links (i, j) ∈ L it
will forward incoming packets with destination d. We introduce, for this purpose,
routing fractions or “ split ratios” αd

i,j satisfying

αd
i,j ≥ 0,

∑

(i,j)∈L
αd

i,j = 1.

This means the rates of flow k satisfy yk
i,j = α

d(k)
i,j xk

i for each (i, j) ∈ L.



Congestion control with multipath routing 3

2.3 Congestion measure

Rates and routes will be controlled in response to a common congestion mea-
sure (called “price”). The basic price pl is a scalar variable that measures the
congestion state of each link l ∈ L, depending on its total traffic yl. In our
implementation of Section 3, pl will be the delay at the queue of link l.

The key to a scalable solution is the ability to summarize in a simple variable
the congestion state of a portion of the network, using current routing patterns.
We define, for this purpose, the node prices qd

i , i ∈ N , each representing the
average price of sending packets from node i to destination d. Node prices must
thus satisfy the recursion

qd
d = 0, qd

i =
∑

(i,j)∈L
αd

i,j [pi,j + qd
j ], i 6= d. (1)

At the source node of flow k, the node price summarizes the congestion cost of
the network for this flow. We denote it by

qk := q
d(k)
s(k) .

2.4 Control

There are two main things to control in the network, source rates and router
split ratios, based on the common congestion measure.

Control of source rates is typically done via the congestion window; a more
macroscopic flow model takes the form of a “demand function” xk = fk(qk), in
which rate responds to the congestion price qk. In the case of TCP-FAST, this
function takes the form

xk =
Kk

qk
;

this is equivalent to the source maximizing its “consumer surplus” Uk(xk)−qkxk

for the “utility function” Uk(xk) = Kk log(xk).
Routers must update the split ratios αd

i,j , based on congestion information,
obtained locally or from its neighbors. Rather than instantaneously choosing the
single least congested route, which causes route flaps, an idea that goes back to
[3] is to gradually shift traffic to less congested routes. We impose the following
conditions on the vector of changes {∆αd

i,j}:
– {∆αd

i,j} depends on current ratios {αd
i,j} and congestion prices {pi,j + qd

j }.
– {∆αd

i,j} is negatively correlated with the route prices, and maintains node
balance:

∑

(i,j)∈L
∆αd

i,j(pi,j + qd
j ) ≤ 0,

∑

(i,j)∈L
∆αd

i,j = 0.

– Equilibrium is only reached when all outgoing links in use have equal price,
qd
i = pi,j + qd

j , and the rest have αd
i,j = 0.



4 Enrique Mallada and Fernando Paganini

2.5 Optimization interpretation

The above strategy for control of rates and routes can be interpreted in terms of
distributed optimization. Indeed, in [9] the equilibrium points of such algorithms
are shown to solve one of the following problems, which generalize those in [7, 8]
to the case of arbitrary multipath routing.

Problem 1 (WELFARE). Maximize
∑

k Uk(xk), subject to link capacity con-
straints yl ≤ cl, and flow balance constraints.

Problem 2 (SURPLUS). Maximize S :=
∑

k Uk(xk)−∑
l φl(yl) subject to flow

balance constraints.

Both these problems optimize aggregate utility of all sources, in the second
case discounting a “traffic engineering cost”. Which optimization applies depends
mainly on the method used to generate link prices: Problem 2 applies to the case
where the congestion measure is a marginal cost,

pl = φ′l(yl); (2)

Problem 1 applies to a congestion measure satisfying the dynamics

ṗl = γl[yl − cl]+pl
. (3)

In addition to an interpretation at equilibrium, dynamic properties of these
algorithms are studied in [9]; it is shown that under certain assumptions of time-
scale in the control, they converge globally to the optimal points.

Both of the models in (2-3) have been applied to queueing delay; the first
(a static function of link rate) follows from queueing theory in steady state;
the second from fluid-flow considerations. Regardless of these considerations,
the main point is that taking queueing delay as our notion of congestion, the
proposed methods for adaptation of routes and source rates have a rationale in
terms of solving a global optimization.

3 Implementation

The formalism described in the previous section can be taken as a basis for
more than one implementation, depending on the choice of the link congestion
measure, the source utility function, and the method for sharing congestion
information between routers and with traffic sources. In [9] we outlined some of
the implementation issues in general terms, a discussion we continue here.

3.1 Discussion and Strategy

• A first point concerns the formation of node prices, which are used by routers
to make decisions on traffic splits. Given link prices generated at each router,
the corresponding node prices that satisfy (1) can be found iteratively: each



Congestion control with multipath routing 5

node periodically updates qd
i to the right-hand side of (1), based on an-

nouncements of neighboring nodes and its own link prices, and then an-
nounces its new price to its neighbors. Under the assumption of continued
connectivity, it can be shown this recursion converges. The message passing
is exactly the same as in distance-vector protocols such as RIP. The main
change is that instead of taking hop-count as the default metric in routing
announcements, we replace it by congestion price. Specifically, when router
i announces to its neighbors it can reach destination d, it attaches as metric
the corresponding congestion price qd

i .

• Update of router split ratios: an implementation difficulty here, already iden-
tified in [3], refers of the possibility of generating routing loops during the
transient phase (these disappear in equilibrium due to optimality). A block-
ing method was proposed in [3] to avoid this, and can be adapted here as
follows: a loop can only occur if some packets are going “uphill” in price qd

i ,
interpreted as a potential. This “improper” behavior cannot be completely
banned without potentially leading to discontinuities in αd

i,j ; however it can
be flagged, and communicated to neighbors, warning them not to start rout-
ing new traffic in the direction of the improper-behaving node. In this way,
starting from a loop-free configuration, this property is preserved.

• Communication of the price to the sources. A major point of discussion (see
[11]) among congestion control implementations is whether to introduce ex-
plicit congestion signals between routers and sources, or to rely exclusively on
implicit measures which can be estimated by sources. The latter alternative
is usually favored for practical reasons of incremental deployment.
In this paper we hit a middle ground on this issue. On one hand, we believe
that explicit congestion control at the fastest time scale (a price in every
packet) would be both burdensome to the routers, and not very useful in
the multipath context. After all, for routers to find their correct node prices
based on the RIP protocol takes some time, so there is no point in providing
fast feedback of a quantity that may not have the correct value. So we will
favor a congestion signal that sources can implicitly estimate, such as loss
probability or queueing delay. In this way, sources that probe the network
with large amounts of packets may be able to infer the current congestion
measure faster than the time it takes the routers to become aware of it.
Still, these implicit estimation methods may have biases and it is essential for
the correct functioning of the overall system that, over the long run, sources
and routers use compatible prices. Therefore we include, at the slower time-
scale of RIP announcements, an explicit portion of message passing between
sources and routers which sources can use to calibrate their estimation. This
requires the IP layer of a source node to listen to the RIP announcements,
and pass the corresponding price qk up to its TCP layer which is doing the
price estimation.



6 Enrique Mallada and Fernando Paganini

• When choosing an implicit measure of congestion, to be useful in this scenario
it should respect the recursion (1). From an end-to-end perspective, the price
qk must equal the average price experienced by packets over their respective
routes, according to their corresponding routing fractions. In [9] we outlined
how loss probability (or ECN marking probability) satisfied this requirement,
to first order. Here we focus on queuing delay: if pl is the delay of each link’s
queue, then qd

i in (1) is the average or expected queueing delay experienced
by a packet between node i and destination. So the price qk at the source is
the average queueing delay experienced by packets when probing all routes.
What sources can explicitly measure is, however, not queueing delay but the
average round-trip-time of their packets,

RTT = D + qk,

where D is the average propagation/processing delay over all routes.
In single-path implementations such as TCP-FAST [6], the propagation delay
is estimated through “BaseRTT”, i.e. the minimum observed RTT, which
assumes that the source has encountered an empty queue at least for one
packet. This assumption can be criticized, especially for a source that starts
transmitting on an already congested path, leading to biases and unfairness.
In any event, this solution is not available for a multipath setting: if the
paths have different propagation delays, the required “average BaseRTT”
will be different from the minimum. The correct tracking of this quantity is
one compelling reason for the use of some explicit prices from the IP layer
at a slow time-scale, as described below.

3.2 Details and ns2 implementation

Multipath distance vector protocol This protocol is based on the Bellman-
Ford distance vector algorithm, and its most well-known implementation, RIP
(see e.g. [10]). The protocol learns routes to an IP destination address from
its own locally connected networks, and from routes received from neighboring
routers. But, as compared to RIP, our multipath protocol does not discard a
route if it has a shorter (or cheaper) alternative; rather, it maintains in its
routing table all possible next hops for a given destination. Each row in the
routing table is accompanied with its metric, pi,j +qd

j , where pi,j is the queueing
delay of the link, measured as the link queue divided by its capacity, and qd

j is
the metric learned from the downstream router. Also, each row has a variable
that keeps track of the routing fraction αd

i,j using this outgoing link. Forwarding
decisions are made by choosing a pseudorandom number between 0 and 1, and
going through the list of next hops until the sum of the αd

i,j exceeds that number.
When the algorithm starts, it learns the routes from directly connected des-

tinations, and assigns them cost qd
j = 0. Since these are the first routes to be

learned, they are assigned αd
i,j = 1: all traffic for this destination will initially be

routed through this path. Analogously, every time a new destination is discov-
ered it is assigned αd

i,j = 1; on the other hand, new routes learned for an already
known destination are assigned αd

i,j = 0.



Congestion control with multipath routing 7

Routing announcements of the form (destination, metric, flag) are sent from
each node to its neighbors. These are sent every ∆r

t seconds, or also asyn-
chronously if the node has received a notification that changes its routing table
or metric. The first two fields are similar to RIP’s, the metric is the weighted
average qd

i from (1). The additional flag indicates whether this is a proper or
improper route, used for blocking loops: a route is announced as improper if
at least one of the next hops j with αd

i,j > 0 satisfies either (i) qd
j > qd

i , or (ii)
node j’s last announcement had the improper flag on. We also included a version
of RIP’s “poison reverse” method: if node i is sending all its traffic to node j
(αd

i,j = 1), the announcement from i to j carries infinite metric. This helps avoid
trivial loops in the initial stages of the algorithm.

Periodically, with a separate period ∆a
t , the adaptation of αd

i,j takes place
at node i. We describe this procedure, denoting for simplicity πj := pi,j + qd

j ,
the metric seen by the node for each of its outgoing links:

– Identify the minimum metric πmin = minj πj .
– For links which are more expensive than the minimum, update

αd
i,j(t + ∆a

t ) := αd
i,j(t) + β∆a

t (πmin − πj);

β is a system parameter that controls the speed of adaptation.
– The sum of all the decrements in αd

i,j above is compensated by distributed
increments in the cheapest links, except those which are blocked; a node is
blocked if has the improper flag on and is receiving no traffic.

Modifications to TCP-FAST Associated with source nodes are TCP-FAST
agents. These estimate average RTT and BaseRTT by running, for each received
ACK, the updates

RTT := (1− a) ∗RTT + a ∗ currentRTT (4)

BaseRTT := (1− b) ∗BaseRTT + b(RTT − qk) (5)

The RTT averaging equation (4) is standard: the parameter a can be made
inversely proportional to the current window size. This makes the time constant
of the filter to correspond to a certain number of RTTs. Equation (5) to estimate
BaseRTT is modified from FAST, it is not based on the minimum RTT. Instead,
we apply a lowpass filter, with parameter b << a (so BaseRTT evolves at a
slower time-scale than RTT ), driven by the values (RTT − qk), where the prices
qk are computed by the routing agent. In ns2, every time the routing agent at a
node computes a new price qd

i , it checks whether there are any FastTCP agents
at the same node with that destination. If so, it updates the qk parameter used
by that agent.

Another modification required on FastTCP is that, consistently with multi-
path routing, it no longer makes sense to consider the ordering of packet arrivals
in decisions about congestion control. In particular, the duplicate ACK feature
should be removed, and RTT averaging should be performed on all packets, not



8 Enrique Mallada and Fernando Paganini

just those which come in order. In our current implementation, we sidestep these
issues through the following means: on the receiving end, the receiver sends as
ACK the sequence number of the received packet, rather than the usual of stat-
ing the next expected packet. All these become valid ACKs and are used in
the RTT computation by the FastTCP source. On the other hand, we emulated
on the source’s side the receptor logic, so that the rest of the protocol did not
require changes.

4 Simulation results

We present some results for the simple network topology shown in Figure 1.
There are two sources at nodes 1 and 2, a common destination at node 4; both
sources use TCP-FAST with parameter K1 = K2 = 250. This parameter repre-
sents the number of packets to be stored in network queues in equilibrium. There
are two bottleneck links: (2,4) with capacity 37.5 Mbps, and (3,4) with capacity
25 Mbps; both have one-way propagation delay of 25ms. Links (1,2) and (1,3)
have capacity of 100Mbps, and 50ms delay. Capacities and delays are the same
in the reverse path. Packet size is 1040 bytes.

The following parameters were used in routers: β = 0.5, ∆r
t = 500ms, ∆a

t =
500ms. In TCP sources, we used a−1 = 4 ∗ cwnd, b−1 = 3000 for the averaging
of RTT and BaseRTT.

Fig. 1. Simulated network

The simulation results are depicted below. Figure 2 contains split ratios and
metrics (prices) for nodes 1 and 3. Figure 3 contains queueing delays for bottle-
neck links (2,4) and (3,4), and the rates of both sources in packets/second.

In the initialization process, for random reasons all nodes (1,2,3) discover
first the top route, via node 2 to destination node 4. In particular, node 3 sets
its split ratios initially to route via node 1, the longest route, and blocks the use
of link (3,4) for node 1. Therefore, initially all traffic from both sources travels
on the top route and reaches the destination through link (2,4). For about 7
seven seconds, both TCP-FAST sources ramp up their rates, source 2 having an
initial advantage due to its smaller RTT. At that time, link (2,4) saturates and
the sources react, converging around 30 seconds to sharing the bottleneck fairly.



Congestion control with multipath routing 9

By 30 seconds, node 3 has completed its transfer of routing to link (3,4).
This unblocks the bottom route for node 1, and allows for source 1 to increase
its total rate, eventually filling the bottom link as well around 45 seconds. At
the same time, this allows source 2 to send more traffic through link (2,4).

Node 1 : split ratio for destination 4

time (s)

ratio

0 50 100

0.0

0.2

0.4

0.6

0.8

1.0 next hop 2

next hop 3

Node Prices for Neighbors

time (s)

delay (s)

0 50 100
0.00

0.02

0.04

0.06

0.08

0.10 link 1−>2
link 1−>3

(a) From node 1

Node 3 : split ratio for destination 4

time (s)

ratio

0 50 100

0.0

0.2

0.4

0.6

0.8

1.0 next hop 1

next hop 4

Node Prices for Neighbors

time (s)

delay (s)

0 50 100
0.00

0.02

0.04

0.06

0.08

0.10 link 3−>1
link 3−>4

(b) From node 3

Fig. 2. Split ratios and prices for destination 4

After about 60 seconds, the system reaches an equilibrium with node 1 rout-
ing 20% of traffic from source 1 through the top path, and 80% through the
bottom path. Node 2 routes all traffic from source 2 through link (2,4). Queue-
ing delays (prices) at both bottlenecks equalize, so the sources with same demand
curves equalize their rates to (c1 + c2)/2 = 31.25 Mbps or 3750 packets/second.

5 Conclusions

We have implemented distributed algorithms, at sources and network routers,
which solve a distributed optimization problem, combining traffic engineering
with congestion control as proposed in [9]. The implementation is based on
queueing delay as a congestion price; routers measure local prices and exchange
information with neighbors, following a multipath variant of a distance-vector
routing protocol. Fast-TCP sources estimate this delay from their RTT mea-
surements in real time, calibrating their propagation delay through periodic
interactions with the IP layer. Our ns2 simulations over a simple network verify
the expected behavior from the theory. Future work will involve more extensive



10 Enrique Mallada and Fernando Paganini

Queuing Delays

time (s)

delay(s)

0 50 100 150
0.00

0.02

0.04

0.06

0.08

0.10

0.12
link 2−>4
link 3−>4

Fig. 3. Bottleneck queueing delays and source rates

tests and larger networks. Remaining challenges are partial deployment of this
protocol and its compatibility with IP address summarizing.

Acknowledgment. This work was partially supported by grant FA9550-06-1-
0511 of the US AFOSR, Latin American Initiative.

References

1. L. Chen, S. H. Low, M. Chiang and J.C. Doyle, “Cross-layer congestion control,
routing and scheduling design in ad-hoc wireless networks”, IEEE INFOCOM 2006.

2. T.Cui and L. Andrew, “FAST TCP simulator module for ns-2, version 1.1”, avail-
able from http://www.cubinlab.ee.mu.oz.au/ns2fasttcp

3. R. G. Gallager, “A minimum delay routing algorithm using distributed computa-
tion”, IEEE Trans. on Communicactions, Vol Com-25 (1), pp. 73-85, 1977.

4. H. Han, S. Shakkottai, C. V. Hollot, R. Srikant and D. Towsley, “Multi-Path TCP:
A Joint Congestion Control and Routing Scheme to Exploit Path Diversity on the
Internet”, in IEEE/ACM Trans. on Networking, Vol. 14, Issue 6, Dec. 2006.

5. I. Gojmerac, T. Ziegler, F. Ricciato, P. Reichl, “Adaptive Multipath Routing for
Dynamic Traffic Engineering”, Proc. GLOBECOM’03, San Francisco, Nov. 2003.

6. C. Jin, D. X. Wei and S. H. Low, “FAST TCP: motivation, architecture, algorithms,
performance”; IEEE Infocom, March 2004.

7. F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication networks:
Shadow prices, proportional fairness and stability”, Jour. Oper. Res. Society, vol.
49(3), pp 237-252, 1998.

8. S. H. Low and D. E. Lapsley, “Optimization flow control, I: basic algorithm and
convergence”, IEEE/ACM Trans. on Networking, vol.7, no.6, pp 861-874, 1999.

9. F. Paganini, “Congestion control with adaptive multipath routing based on opti-
mization”, Conf. on Information Sciences and Systems, Princeton, NJ, Mar 2006.

10. L. L. Peterson and B. S. Davie, Computer Networks: a Systems Approach, Morgan-
Kauffman, San Francisco, 2003.

11. S. Shalunov, L.Dunn, Y. Gu, S. Low, I. Rhee, S. Senger, B. Wydrowski, L. Xu,
“Design Space for a Bulk Transport Tool”, http://transport.internet2.edu/

12. Y. Xi and E. Yeh, “Node-Based Distributed Optimal Control of Wireless Net-
works”, Conf. on Information Sciences and Systems, Princeton, NJ, Mar 2006.


