N\ Foundations of RL
Lecture 9: Modern RL Algorithms

‘

= =

Enrique Mallada

Goals:

* Give an overview of Deep RL methods
* Deep Policy Gradient Methods

Sources

* Courses from the Experts:
1. Sergey Levine, Deep Reinforcement Learning, Decision Making, and Control (2023)
2. David Silver, Reinforcement Learning (2015)
3. Jared Markowitz, Applied Physics Lab Lectures (2023)

* Textbook:

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Available online at
http://www.incompleteideas.net/book/the-book-2nd.html

* OpenAl: Spinning Up in Deep RL

* Research papers will be cited throughout

» We will heavily leverage Levine’s course, particularly for theory.

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

What is Reinforcement Learning?

At each timestep t, the agent:
e Receives observation oy
e Receives scalar reward r;
e Performs action ay
At The environment:

e Receives action ay

e Provides observation oy

e Emits scalar reward r;

Goal: Select the actions that maximize future expected rewards

What is Deep Reinforcement Learning?

70 (at\ot)

* Deep neural network performs
function approximation for the
agent.

* G@Greatly increases the versatility and
scalability of RL

Evolution of DRL Mirrors Evolution of Computer Vision

standard
computer
vision

features

< mid-level features classifier _
(e.g. HOG)

(e.g. DPM) (e.g. SVM)

Felzenszwalb ‘08

deep
learning

standard
reinforcement
learning

. ? linear policy -
© o orvalue func.

deep
reinforcement
learning

Image Credit: Levine UC Berkeley Course

5

Anatomy of an RL Agent

Estimate the
return / fit a
model

Run the policy
(generate samples)

; ey
policy

Slide sequence credit: Levine UC Berkeley Course

6

The four main types of DRL algorithms

0* = arg m@ax Erpo () {zt: r(s¢, at)}

1. Policy gradients: directly differentiate the objective; perform gradient
ascent on parameterized policy

2. Value-based: no explicit policy representation; instead estimate Q or
value function of the optimal policy

3. Actor-critic: estimate Q or value function of current policy; use it to
Improve policy

4. Model-based: learn parameterized representation of state transition
model, use it either for planning or to improve a policy (e.g., via synthetic
experiences)

Taxonomy of DRL Approaches

(

Policy Optimization

Policy Gradient <——

A2C [/ A3C <—

PPO

TRPO

-«

-~

RL Algorithms
Model-Free RL Model-Based RL
Q-Learning Learn the Model
¢ y E— DQN — World Models
> DDPG R —) g
‘ : — cs1 — 12A
— TD3]) :
\ —> QR-DQN —> MBMF
> SAC I))
—> HER > MBVE

\

Given the Model

—'{ AlphaZero

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Extensions

* There are numerous extensions to the basic RL formulation that may be used to
address operational needs:

— meta-learning
---- learning/adaptation

Transfer learning: fine-tuning 9
Multi-task RL: learn multiple tasks at once Vﬁ
Meta-learning: learn to learn 3

' *
* Inverse RL: learn reward function Vﬁl /,x‘ 93
7/
. . . //l \\\
* Offline RL: learn without a simulator % ¢ N %
1° 03

Constrained RL: constraint on objective (e.g. Lagrangian formulation)
Distributional RL: carry distribution through value-based methods

Image credit: C. Finn, P. Abbeel, and S. Levine,
“Model-agnostic meta-learning for fast adaptation of
deep networks,” arXiv:1703.03400v3 (2017).

9

Canonical Examples of DRL

* Deep Q-learning reaches human level on Atari suite
* AlphaZero masters Chess, Shogi, and Go

* AlphaStar bests human professionals in StarCraft

* OpenAl programs robotic hand to solve Rubik’s Cube

* RL for tuning Large Language Models (RL from Human Feedback)

10

V. Mnih et al. Human-level control through deep

Deep Q Learning for Atari reinforcement learning. Nature 518, p. 529-533 (2015).

a 2,200, b 6,000
o 2,000 (4}
: . 3 1.800} B 5,000+
Convolution Convolution Fully connected Fully connected 2/ 2
r i T 7 & 1.600r % 4,000
g 1,400 ?g 2 I
—ig) ° o) 1,200 i [0 g 000
o S 1.000} s T
B ° o x Q
g &0 o 800f ® 2,000
g ! & 8, 2,000
g . @ 600} @
D . ED S 400} g 1,000}
% . < 200 <
S| ¢ 3 Py T S S R S ()] s LN D i R
a : 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
0) Training epochs Training epochs
N L] =
. . & o
/ L] —_ o
A\ ! B ; g of
E ° g 7 g 8t
: ! [5-0] B g 7|
] 5 . !
: 5 S 5 s
%/ ?) ® 4
° ® o «© 3 % 3 H
K+O > =
> 2 o 2
< <
1 1
0 " " " " " " " " " " o
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Training epochs Training epochs

The level of professional humans is met on 49 of 57 Atari games with the same network architecture, learning strategy,

and hyperparameters.

11

DQN Learning Breakout

AlphaGo Zero, AlphaZero: Policy-Guided Monte Carlo Tree Search

“Plays like a human on fire”
(p7 V) — f9 (S)
I =(2—v)* =" logp +c||0]|?
Figure 1: Self-play reinforcement learning in AlphaGo Zero.
a Self-play s, 8, S, Sy N(S)
—lin, HEoSin ok N, 208 a; = argmax, [Q(s,a) + C(s)P(s,a)
' 14+ N(s,a)
) { ,\\')\,&\/\1 >\,\ A/\i ,\\/\,L,/\ /,. ,\\/\,\ ,./< ,?’\A A/\{>\; a Select b Expand and evaluate € Backup d Play
4 Repeat)
b Neural networl:raining . . Z ____(_Q_i_t_/?;i_— Q+UVF:_/_$“ P Q/n__%_ Q “%“
; ; , ¢ 13 i VT8 s st A AN
: : Q+U o, Q+U Pl NP /N2 FAW A FaNa
: =1, 4 a

. . 2 4 * D.Silver et al. Mastering the game of Go without human knowledge.

i l s l s l . Nature 550, p 354-359 (2017).
D. Silver et al. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science Vol. 362 Issue 6419, p 1140-
1144 (2019).

0. Vinyals et al. Grandmaster
level in Starcraft Il using multi-
agent reinforcement learning.

AI phaStar Nature, 575,350-354 (2019).

Raw Observations Neural Network Activations

~ - 9
S P
; P Atve

Considered Build/Train

Image credit : DeepMind Blog

14

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

OpenAl: Solving a Rubik’s Cube with a Robotic Hand

Akkaya et al. Solving Rubik’s Cube with
Train in Simulation a Robot Hand. arXiv:1910.07113
(2019).

A We use Automatic Domain Randomization (ADR) B We train a control policy using reinforcement learning.
to collect simulated training data on an ever-growing It chooses the next action based on fingertip positions
distribution of randomized environments. and the cube state

Transfer to the Real World

e &
D We combine the state estimation network
and the control policy to transfer to the real world.

‘ C We train a convolutional neural network to predict the
cube state given three simulated camera images.

In many applications, transferring from simulation to reality is the dominant challenge.

15

Credit: Hugging Face

RL for Fine-Tuning Large Language Models

Reinforcement Learning from Human Feedback (RLHF)

. Can you explain to me how RL with human feedback works for language models like | am
five?

@ Sure! So, imagine you have a robot named Rufus who wants to learn how to talk like a
human. Rufus has a language model that helps him understand words and sentences.

First, Rufus will say something using his language model. For example, he might say "l am
arobot®

Then, a human will listen to what Rufus said and give him feedback on whether it sounded
like & natural sentence a human would say. The human might say, "That's not quite right,
Rufus. Humans don't usually say ‘| am a robot.' They might say “I'm a robot’ or 'l am a
machine.'

Rufus will take this feedback and use it to update his language model. He will try to say
the sentence again, using the new information he received from the human. This time, he
might say "I'm a rabot.”

The human will listen again and give Rufus more feedback. This process will continue until
Rufus can say sentences that sound natural to a human.

Owear time, Rufus will learn how to talk like a human thanks to the feedback he receives
from humans. This is how language models can be improved using RL with hurman
feedback.

16

https://huggingface.co/blog/rlhf

Credit: Hugging Face

RL for Fine-Tuning Large Language Models

Reinforcement Learning from Human Feedback (RLHF)

Prompts Dataset
Train Language Model P <\
Prompts & Text Dataset - Reward .::::’frmnnn}
a
Initial Language Model o 80
AR
S v Train on '=~.§-,'-k 4
ol {sample, reward} pairs
oL _ J
: :'_-. ‘ Sample many prompts
N
1 Qutputs are ranked
: (relative, ELO, atc.)
I A - ~ .
S R SR ; Initial Language Model | Lor=m paum aoor ﬁl[J
sit amet, consaciag L
sssssasgy H aipiscing elit e —_— 74
EEIEEE '.*'“."{'~ Donec quam falis —
s *e - N)
H N e g .y vulputate oget, arg —_ |
L “:‘i}:’ Ham quam nunc > [_]
‘. -"",. 4 eros faucibus Ntk Human Seoring \ [—]
Human Augmented % y luctus pubvinar, b \
Text (Optional) Generated text ()

https://huggingface.co/blog/rlhf

RL for Fine-Tuning Large Language Models

Reinforcement Learning from Human Feedback (RLHF)

Prompts Dataset
WA dogis...
™ 7 Tuned Language h
Initial Language Model Model (RL Policy)
&% ’: : Reinforcement Learning
. iy e W, . ;'-\. 3
:5{{3‘ - e .% 9 Update (e.g. PFO)
e ey —
oo \eie 0+ 0+ Vs (0)
W A = |
J J A~
RLHF BEE®
Base Tent ,?m:‘, Tuned Text @D D@ ::;:2:“ f:mfmm}
y: a furry mammal y: man's best friend = E =eli \o g
. *J\L<f /7| FRee
¢ > J,
—AkL Dk (mppo(U]z) || Mhase(ylz)) S .+
KL pradiction shift penatty
ro(y|x)

Credit: Hugqging Face

16

https://huggingface.co/blog/rlhf

Implementation Tips 1

DRL Implementation

* Requirements

* Basic components

* A few words about parallelization
* Open-source code

Estimate the
return / fit a
model
Run the policy
(generate samples)
; Improve the
policy

O PyTorch

f

TensorFlow

18

What is required upfront?

* Sufficient compute

* Typically want a lot (10! — 103) of parallel cores
* GPUs useful for larger network architectures
* Permission, ability to run deep learning software

Estimate the
return / fit a
* Will need to iterate- no one trains their best agent on the first try model

* Fast simulation that appropriately captures system dynamics
* Level of realism required depends on application (generate samples)
* Speed required depends on compute; usually need faster than real-time
* Need a clear picture of how the agent will interact with the rest of the system

Improve the
. . policy
* Time to iterate, test

* Less of a well-established recipe than other types of ML
* Lots of factors impact agent performance

e Challenging to bridge sim-to-real gap

19

IDEs / Editors

* Obviously feel free to use whatever you’re
comfortable with.

* It has a particularly accessible debugger, |
which | have found useful. "

Required Software Components

* Environment
e Usually follows OpenAl Gym API
* Contains simulation of the world the agent is
interacting with
* Agent
* Contains decision-making code, including learning
scheme
* Network/Model
* Optimized and called by the agent for decision
making
e Utilities (“Other”)
* Whatever helper functions are needed

O PyTorch

»?

TensorFlow

21

A few words about parallelization

* DRL can be computationally expensive; parallelization
can help.

* While GPUs can be useful, many times you can get away
with CPU workers

* The networks are not typically as large as in supervised learning

* There are numerous ways to parallelize DRL code
* MPI, multiprocessing, pickle passing, Dask, Ray, etc.
* These approaches exhibit tradeoffs in terms of flexibility,

transparency, robustness, scalability, and applicability to
different compute resources.

* MPlis probably the best first thing to try, as it scores
highly in all categories.

» The best option depends on the particular project.

22

Open-Source Code

* As mentioned before, it can be useful to write your own code.

* However, in many cases you can save time by using at least some
open source components. If you’'re careful, this can be the best
route.

* Good open source optionsinclude

* OpenAl Spinning Up (https://github.com/openai/spinningup)
 Stable-baselines3 (https://github.com/DLR-RM/stable-baselines3/)

* RLLib (https://docs.ray.io/en/latest/rllib/index.html)

* Unity ml-agents (https://github.com/Unity-Technologies/ml-agents)

* While the problem sets in this course will require you to work
with the class codebase (to which you will contribute!), you are
free to use whatever you want on your project.

» The best option depends on the particular project.

23

https://github.com/openai/spinningup
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://docs.ray.io/en/latest/rllib/index.html
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents

Learning a Policy

* The RL Objective
e Finite vs. Infinite Horizon

Fully observable

Learning a Policy _ (for now)

St, I't

Undiscounted
~po(T) (for now)

Goal: find 0* = arg max E_

24

Fully observable

Learning a Policy _ (for now)

St, I't

24

To (at ‘ St) Fully observable

Learning a Policy (for now)
‘{? \ \\Sil\ \\7\7 \ L\ L\\ \ [
ng I ZF\T ; g7 [I {I \]:[=3 \
\ \ \” ooo o\ - '
St, It | L—— At

Markov Chain on (s, a)

T I 1
po (S1,a1,...,8T,ar) = p(S1) H T (ag[S¢) P (St+1[S¢, a¢)
t=1

))
p(st+17at+1|st7at) —

p(St+1 \St, at)7r9 (at+1 ‘St—l—l)

@0

—/ —/

24

Finite Horizon Case

Undiscounted
(for now)

0* = arg max B pe(r) {Zfr St, At }

t

— arg mgtxz Es, ac)~po(se.ae) [T(St,a¢)] — po(S¢,a¢) is the state-action marginal
t=1

p(St+1 \St, at)7r9 (at—i—l ‘St—l—l)

)))
P(St+1,a¢+1[S¢,a¢) = : @ :

Infinite Horizon Case (Stationary Distribution)

T
. 1
0" = s mQaX T Z E(St,at)Npe (s¢,a) [T(St’ at)]

t=1
SR N R
‘ ’ St+1 T St St+k
() [® 2
— — —

If ergodic, as T' — oc:

po(s¢,ag) converges to a stationary distribution p

pw=Tpu— (T —I)p=0— pis an eigenvector of T with eigenvalue 1.

26

Estimate
the return /
fit a model

Run the policy
(generate samples)

Improve the
Structure of a DRL Algorithm

* Sample Generation
Return Estimation / Model Fitting
Policy Improvement

Algorithms for Learning Policies

(

Policy Optimization

Policy Gradient <——

A2C [/ A3C <—

PPO

TRPO

-«

-~

RL Algorithms
Model-Free RL Model-Based RL
Q-Learning Learn the Model
¢ y E— DQN — World Models
> DDPG R —) g
‘ : — cs1 — 12A
— TD3]) :
\ —> QR-DQN —> MBMF
> SAC I))
—> HER > MBVE

\

Given the Model

—'{ AlphaZero

28

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

General RL Learning Cycle

Key consideration:
which part(s) are
expensive?

Run the policy
(generate samples)

Estimate the
return / fit a

model

Improve the 0 — @ +0!V9J(9)

policy

Slide sequence credit: Levine UC Berkeley Course

29

Expectations and Recursion

t=1

BT rpe(T) [Z r(st, at)]

E

s1~p(s1)

\

|

Q(Sl7 al) L= r(sl7 al) —|_ ESQNp(SQ|Sl,al) [Eagr\nr(a2|52) |:T(827 a2) —|_ ‘SQ] ‘817 a1:|

T(St: ai) = Eslwp{sﬂ [Emw'rr{aﬂsl} [Q(Sls al)|51H

NE

E‘vapg('r) [

t

I
[

— We can improve mg(ay,s1) if we know Q(s1,aq).

30

Undiscounted

Definitions: Q and V (for now)
Q-function:
T
Q" (s¢,a:) = Z E,, [r(st/, ag)|st, at] . total expected future reward from taking a; in s;
#—=t

Value function:

T
V7(st) = Z Er, |r(sy,ap)|s:] : total expected future reward from s,
t'=t

V7™(8t) = Ea,mn(arls,) [Q (S, at)]

Es,~p(s;)|V™(s1)] is the RL objective!

31

Using Q-functions and Value Functions

Method 1 (Q-learning): Improve policy by taking action with highest Q value and
continuously refining Q estimate.

Method 2 (Actor-Critic): Continuously update policy to increase the probability of taking
good actions, where “good” is defined as Q" (s,a) > V" (s)

> We will come back to these!

32

Types of RL Algorithms

e Considerations for when to use what

The Four Main Types of RL Algorithms

0* = arg max | FI L Z r(s¢, az)
Lt il

1. Policy gradients: directly differentiate the objective; perform gradient ascent
on parameterized policy

2. Value-based: no explicit policy representation; instead estimate Q or value
function of the optimal policy

3. Actor-critic: estimate Q or value function of current policy; use it to improve
policy

4. Model-based: learn parameterized representation of state transition model,
use it either for planning or to improve a policy (e.g. via synthetic experiences)

34

Policy Gradient

Estimate the

return / fita J(0) = r~pe(7)lz7“t]
model t

VoJ(0) = Ep,(r) [(Zve log We(at|st)> (ZN&&&%))]

Run the policy =

(generate samples)

Vo J(0) ~ %Z (Z Vo log Wg(ai,t|si,t)> <Zr(si,t,ai,t)>

1=1 \t=1

Improve the

> Yields unbiased but high-variance estimates of gradients

» Variance reduction measures required for practical application

35

Value-Based Algorithms

T (s¢, ay) E Em (s, a¢)|st, at] total expected future reward from taking a; in s;
=t

Z Em (s¢r, Ay |st} total expected future reward from s;
¢ =t

Estimate the [EEPW V(s) or Q(s,a)

return / fit a
model

Run the policy
(generate samples)

Improve the i

36

Actor-Critic: Value Functions + Policy Gradients

AT (st,a;) = Q" (s¢,a,) — V7™ (s¢) : advantage; how much better a; is than expectation

Estimate the
return / fit a
model

Run the policy
(generate samples)

(Parameters ¢)

Improve the

— Different value targets, advantage estimates may be used to modulate bias-variance tradeoft.

— Pure actor-critic uses bootstrapped value targets; some combination with Monte Carlo usually works best.

37

Model-Based RL algorithms

Estimate the
return / fit a learn p(s¢y1|s¢,ay)
model
Run the policy
(generate samples)
; e i
policy

1. Use the model to plan
2. Backpropagate gradients into policy
3. Use the model to learn a value function

A few options...

38

Model-Based DRL (via Backprop)

Estimate the
return / fit a

Run the policy
(generate samples)

Improve the
policy

learn f, such that s;41 ~ fs(se, at)

backprop through f, and r

to train mg(sy) = ay

39

Cost Considerations

Real data:
» Expensive
> Real-time

Simulated data:

» Often cheap
» Often fast

t =1
Estimate the \ h fast
return / fit a cheap, 1as
model
lﬁ st+1 = fe(st, ar)

Run the policy expensive, slow

(generate samples)

; e ey
policy

0 +— 0+ aVyJ(0)

cheap, fast

backprop through fy and r to train mg(s:) = ay

\ expensive, slow

40

REINFORCE (“Vanilla” policy gradient)
Natural policy gradient

Q-learning (DQN)
Temporal difference learning
Fitted value iteration

Asynchronous advantage actor-critic (A3C)
Soft actor-critic (SAC)

Trust region policy optimization (TRPO)
Proximal Policy Optimization (PPO)

Dyna
Guided policy search

Matching Algorithms with Categories

Model-Free RL

RL Algorithms

!

(

(

Policy Optimization

)

Q-Learning

Policy Gradient <

DDPG

)

Model-Based RL

%

(

Learn the Model

DQN

A2C /A3C =

PPO E—

TRPO -—

SAC

QR-DQN

HER

)

Given the Model

—>| World Models | \—ﬁ AlphaZero

—>|_ 12A
—>| MBMF
—>|'. MBVE

41

Why are there so many RL algorithms?

Can’t we just use the best?
Estimate the
return / fit a
model
1. System characteristics
e Continuous or discrete Run tthe pollc?/
e Stochastic or deterministic (giziee e sles)
e Episodic or infinite horizon

* Where is the complexity? t

» What is the “best” approach depends on the
particular problem and the constraints of the
user:

2. User constraints
 Sample efficiency
e Stability
 Ease of use

Improve the
policy

42

On-Policy vs. Off-Policy

* A key characteristic of a policy is its sample efficiency.

* Related to this, algorithms fall into two broad categories:
: can only learn/improve from data collected using current policy
: can learn/improve using data collected from other policies

 Off-policy algorithms are generally more sample efficient.

Estimate the
return/ fit a
model

Run the policy
(generate samples)

h Improve the

policy

43

Sample Efficiency By Method

Off-Policy <= ol b == On-policy

More efficient I Less efficient
ﬁ
Model-based Model-based Off-policy Actor-critic On-policy Evolutionary or
shallow RL deep RL Q-function methods policy gradientgradient-free
learning algorithms algorithms

Maximizing sample efficiency and minimizing wall time are not the same!

Adapted from Levine CS285

44

Considerations: Stability and Ease of Use

* Does the algorithm | picked converge every time? To something useful?

Fixed point iteration

Not guaranteed to converge in nonlinear case o H

Minimizes error of fit (“Bellman Error”): not the same as reward! ['_ [
‘ .
|

Minimizes error of fit- will converge
Better model doesn’t necessarily imply a better policy!

* The only method that performs gradient ascent on the true objective
* Also the least sample-efficient

45

Comparison: Assumptions to Consider

* Common assumption #1:
* Assumed for value function fitting, model-based methods
* Reliance on it can be mitigated through use of recurrence

* Common assumption #2:
* Typically assumed by pure policy gradient methods, model-based RL methods

 Common assumption #3:
* Assumed by continuous value function learning methods, model-based RL

Estimate the
return/ fit a
model

Run the policy

(generate samples)

; Improve the
policy

46

Basic Policy Gradient

Fully observable

The Goal of DRL ‘ (for now)

St, I't

Undiscounted

Goal: find 6* = arg max Foropo () (for now)

48

Finite Horizon

j 0* = arg max . ZT(St: at)

t

T
. 1
* = arg m@aX T ; E(St,at)fvpe(st,at) [T(St, at)] , 1" — 00

T
* = arg mg,x Z E(Et ,a¢)~pg(se,ar) [T(St’ at)]

i—

Evaluating the objective

0* = arg max] - [

L

> (st at)] /

-

J(0) = Errp, (7) [

J(6)

E r St:at

t

] =~ %ZZT(Si,t:&i,t)
N

sum over samples from pg

50

Direct Policy Differentiation

t

Ny -

0* = argmax Erp, (7 {Z r(st, at)]

S

J (@)

J0) = By [r(7)] = / po (7)1 (7)dr

T '

Z r(s¢, at)

VQJ(9> — /Vepe(T)T(T)dT —

Vope(T) = po(T)

Vope(T)
po(T)

= po(7)Vglog(ps(T))

51

Direct Policy Differentiation

J(0) = Erpo(r) [T(T)]

0" = arg max J(0)

VoJ(0) = Erp, ()| Vo log pg(7)r(7)]

Evaluate gradient...

Vo

Look at joint distribution over history
po(s1,ai,...,sT,ar) = p(s; Hm as|s¢)p(ser1|st, az)

Take log of both sides...

log pg(7) = logp(s1) + Z log o (a¢|st) + log p(se+1st, at)
t=1

I}%ﬁ) + ;108 mo(at|st) +1}mat)] /7“(7')
T

i V@J(e) — ETNPQ(T) |:<ZV9 logﬂ'g at]st) <Zfr S¢, A >:|
t=1

t=1

51

Evaluating the Policy Gradient via Sampling

Sampling: J(0) = K, p, (1) [ZT(Sta at)] ~ %Z ZT<Si,ta ai) %
i ot K

Improve the
policy

t

(ZVglogw@ a|s;)) (ir St ay)]

t=1

| N
VoJ (6 NN 2 (Volog mg(aj ¢|sit)) <
=1 t:1 t=1

REINFORCE Algorithm

While not converged:

Vo (6) = Errepy(ry

~

[~
ﬁ
w
&

~—

. Typically works poorly...
1. Sample {7'} from 7y (as|s;) FREE FESEY

2. VoJ(8) = 3, (2, Vo logme(ailsi)) (3, r(si, al))
3. 0 «— 0+ aVyJ(H)

52

Evaluating the Policy Gradient via Sampling

Sampling: J(0) = E-

E T st,at

t

~ ZZ r(sieaie) =

~pe(T)

VoI (0) = Erepyc

(Z Vo log Wg(atst)> < Z r(S¢, at)>]

t=1

52

Partial Observability

w@(at\ot)

Can we use the policy gradient in a partially-observed setting?

> Yes. Never used an assumption of policy depending on state; Reward still depends
can just be a mapping conditioned on what we have: 1 on state; we just don’t

| observe it directly.
Ve J(0) ~ NZ (ZVglogm (a; t|04t)) (Zr Sit, Qi t)

1=1 t=1 T

Just substitute observation for state!

53

Relation to Maximum Likelihood

N
1
Policy Gradient: VeJ(0) = ~ S‘

W
1=1

T
(?VHIOgWQ azt|szt) (ZT Sity A4t)

t=1

N /T

i A 1
Maximum Likelihood: V,Jym(6) ~ ~ Z (ng log 7T9(aqj,t|Si,t)>
1=1 t=1

\
\ N
\ \ \ \
v\ N\ i . . o
X \ [\ \ I\ \ [\ \
\\ : \ N \ [\ YR \ ,
| - |
| { -3 -
b iy B ’[I K=~ [y -
=% [b b e
0 O I A N
\ __ s |\ ‘ oo
\
= bl
. ot

7r9(at|ot)

Ot
‘ Supervised
Learning
at

mm) 7o (ag|oy)

54

Some Intuition

N /T T N
1 1
Vo (0) = — > (Yve log o (@ [0;,¢) (ZT (Si,es Qi)) =~ Y Vologmg(ri)r(m)

=1 t=1

N
1
maximum likelihood: VgJy(6) ~ NN Z: o log mo(7;)

REINFORCE Algorithm | ?
While not converged: ‘
1. Sample {7*} from 74 (as|s;)
a‘)) » Makes good trajectories more likely

2. Vo J(0) = 32; (32, Vo logma(ajlsi)) (32, r(sj. af > Makes bad trajectories less likely
3. 0«— 0+ aVyJ(0) > Formalization of trial and error!

55

Example: Gaussian policies

1

N T
VoJ(0) ~ ~ (Vo log Wg(az-,tsi,t)> (Z r(si,t,az-,t))

4 4
=1 \t=1 t=

[

example: 7,(a¢|st) = N (fneural network(St); Y)

1
log mg(at|st) = —EHf(st) — az||% + const

Vo logms(ads:) = 3% (f(s:) — a0) o

REINFORCE Algorithm

While not converged:
1. Sample {7"} from g (a|s;)

2. VoJ(0) = 32, (32, Vologmp(allst)) (32, (si, al))
3. 0«+— 0+ aVyJ(0)

Recap: Basic Policy Gradient

Estimate the
return / fit a
model

Directly differentiates RL objective

r—>

_ o Run the policy
Works under partial observability (generate samples)

| —

Can be evaluated via sampling

l

Can be seen as making good trajectories
more likely, bad trajectories less likely

Improve the
policy

57

Problems with policy gradient

* High variance, sample inefficiency

Problem: Variance

N
1
VoJ(0) ~ N E Vologpe(7)r(r)
1=1

Thought experiment: What if we were to add a constant to make the two “good” outcomes 0 reward?

* Problem: policy gradient has high variance!

» Often leads to noisy gradient estimates

Animation credit: Levine UC Course

59

Problem: Data Hungry

6* = arg max J(0)

More efficient

Off-Policy <= -1- ==p On-policy

| Less efficient

J(0) = Brspa@)|7(7)])

Model-based
shallow RL

VoJ(0) = BRIV o log pe (1) (7))

REINFORCE Algorithm

While not converged:

L. Sample {r'} from mo(ay|s:)
2. VoJ(0) = >, (Zt Vg log 779(3%|S%))(Zt T(S%.?a%))
3. 0— 0+ aVyJ(0)

B
Model-based Off-policy Actor-critic On-policy Evolutionary or
deep RL Q-function methods policy gradient-free
learning gradient algorithms
algorithms

|

We can’t get around this sampling

Because NN updates slowly, this can be
highly inefficient!

60

Improving Policy Gradient

* Leveraging causality, baselines, off-policy policy gradient

Reducing Variance: Causality

1=1 t=1

N T
1
VoJ(0) ~ N Z Z Vg log mg(a;,¢]sq,¢) (Z r(siu, az’,t’))

1=1 t=1 t'=1

N T
1
VQJ(H) ~ NZ (ZVelOgWH aztlszt) (Z T'\Sq,t, At)
T

Causality : po]icy at time t' cannot affect rewards at time ¢t when t < ¢/

T T
Vo J (6 Z Z Vo log mg(ai.¢|sit) (Z 7(S4,1/ az’,t’)) Qiv = (Z T(Sivt’va%t’>>

1=1 t=1 t/ ==t =t
“reward to go”

N T
1
Vol (6) ~ ~ D> > Vologm(ailsi)Qi

i=1 t=1 » Smaller gradients, smaller variance!

62

Reducing Variance: Baselines

Vo J (0 Zvelogpe)[r(1) — b))

E[Vglogpg(T)b] = /pg(T)Vg log pg(T)bdT = /Vgpg(T)de = bVy /pg(T)dT = bVy /pg(T)dT = bVl =0

» Subtracting a baseline is unbiased in expectation!
» It turns out that the mean reward is a good baseline to use.
» If you want the baseline that reduces variance the most, choose

. _ Elg(r)*r(r)

Note: varies by parameter dimension
Elg(1)?]

63

Analyzing the variance

Witiahes dabnition: Va,r[a:] _ E[:L’z] B E[:E]z » We can also use a neural network to

VoJ(0) = Ervpy(r) [Vologpe(7)(r(7) — D))

estimate a state-dependent baseline!
» This is also free of bias (more later).

Var = ETNPQ(T) (Vg log po(7)(r(r) — b))Q] - ETNP@(T) [Volog po(7)(r(7) — b)]Q

this bit is just E . ,,(r)|Ve logpe(T)r(7)]
(baselines are unbiased in expectation)

% = %E[g(ff(r(r) —b)?] = %(W— 2E[g(7)?r(7)b] + b*E[g(1)?])

= —2[Eg(7)*r(7)] + 2bE[g(7)?*] = 0

h— Elg(r)*r(1)] > Expected reward weighted by gradient magnitudes.
Elg(7)?]

64

On-Policy Learning: Data Hungry

6* = arg max J(0)

More efficient

Off-Policy <= -1- ==p On-policy

| Less efficient

B

J(0) = Brspa@)|7(7)])

Model-based
shallow RL

VoJ(0) = BRIV o log pe (1) (7))

REINFORCE Algorithm

While not converged:

L. Sample {r'} from mo(ay|s:)
2. VoJ(0) = >, (Zt Vg log 779(3%|S%))(Zt T(S%.?a%))
3. 0— 0+ aVyJ(0)

Model-based Off-policy Actor-critic On-policy Evolutionary or
deep RL Q-function methods policy gradient-free
learning gradient algorithms
algorithms

|

We can’t get around this sampling

Because NN updates slowly, this
can be highly inefficient!

65

Off-policy learning via importance sampling

0* = arg max J(0)

J(e) — ETNPG (1) [T(T)]

What if we don’t have samples from pgy(7),

but instead have samples from a different p(7)?

I(6) = Ernio) | 2250
po(T) = p(s1) H To(at|st)p(St+1/St, at)

Importance sampling:

Benpolf(@)] = [p(2)f(@)da

- f q“; () G

/(x p(_:z:f (z)dz

q(z)

q(z)

[Ti—, mo(als:)

po(r) _ pls) [T, mo(arlsi)pfsezafse an) _

P(S/l) HtT:1 T(a¢|s¢)P(St+1/St, at)

[Ti_ ™ (acls:)

Off-policy policy gradient

0* = arg max J(6)

J(0) = Erpy(r)[r(T)]

Vo J(0) = Erpo(r)

po (T)

po(T)

Vo log pg (T)r(T)

> Increases variance!

when 0 # ¢’

por (T) [T,_; 7o (as]s:)

po(T) Hthl mo(ag|sy)

» Need further tricks to make this tenable; will re-visit.

67

Recap: Improving the Policy Gradient

AZ;T,t ~ Z r(si, i)

r(7)
»
_/ 4. Estimate the
o return / fit a
. model
Off-Policy <= -1— ==p On-policy
More efficient : Less efficient
Model-based Model-based Off-poli A -criti On-poli Evoluti .
shalow R despRL . Qfuncln methods poliy | gradientiree. Run the policy
learning gradient algorithms
algoritims (generate samples)

* Reducing variance
* Leveraging causality
« Adding a baseline Improve the

* Reducing data needs policy
« Off-policy policy gradient

0 <— 0+ CEVQJ(&)

68

Actor-Critic Algorithms

Recap: Improving the Policy Gradient

AZ;T,t ~ Z r(si, i)

__/ Estimate the
L7 IS~
return / fit a

model
Off-Policy <= -1— ==p On-policy
More efficient : Less efficient
shalowRL . deepRL - Qiincion methods poliey | gradientires Run the policy
learnin radient algorithms
i agoritms (generate samples)
N T
1 T Improve the
JO) = =Y Y Vilogmg(a;lsis)Q .
VQ () N oy oy 0 g 9 ’I/,t 'Iz,t ’L)t pollcy
1=1 t=1

0 <— 0+ C}:V{;J(a)

» Actor-critic is about estimating reward to-go.

70

(Further) improving the policy gradient

T
VoJ (6 ;ZZVQ log o (a,t(si,t) (Z (Si,t’aai,t’)>

1=1 t=1 t'=t

reward to go 0 =

Q_ reward tQ go: suma
2,t

2

hese rewards

Qijt: estimate of expected reward if we take action a;; in state s; ; o~y r(sik,air)
t'=t
T Can we gad, QH@E@J[T%MI}M@?
Q(s¢,as) = Z E.,[r(s;, a})|s:,as] : true expected reward-to-go
=t

N T
1 | |
VoJ(0) ~ — Vo log mo(ait|si) Q(si, ait) Lower variance!
N

i=1 =1

71

What about the baseline?

T
Q(s¢, ar) = Z Er,[r(sy,ay)|se, a]: true expected reward-to-go
fi=t
| N7
VoJ(0) ~ N ; ; Vo log mg(aitsi) (Q(ss,e,ait) — b)

b = average reward

1 Could average over trajectories
by = — ZQ(Si £y ¢)
N < T T
' Reduce variance more by Qi:=) Ex,[r(se,au)ls:, a]
V(8t) = Eq,~mo(arls) Q(st|a:)] 4mmm ysing state-dependent o
baseline (gradient still
unbiased)

72

Terminology Recap

T

Q" (s¢,a) = Z E.,|r(sy,ay)|st, at]: quality; total expected reward from taking a; in s; fit @, V", or A"
t'=t
Estimate the
V7T(st) = Eayrmg(ay]s) (@7 (8¢, a¢)]: value; expected total reward from s; return / fit a

model

A" (s, a:) = Q7 (sg,a;) — V7 (s¢) : advantage; how much better a; is than expectation

Updating policy:

N T
1
VeJ(0) = — Volog mg(a; ¢[si¢) A" (Si,t, ase)
N

i=1 =1

Improve the
policy

0 <— 0+ CEVQJ(&)

this estimate can be used to reduce variance!

Recall:
T

N T
Vo J (6 %;g Vo log o (as,¢lsi,¢) (Z (Si,vr @) — b><— Unbiased but high-variance (single-sample)

t'=t

73

Fitting a vaITue function

Q7(st,a) =) Er,[r(sv,av)lse,] fit Q7, V", or A"

t’'=t .
Estimate the
Vﬁ(st) — EatNﬂ'g(at|st) [QW(St, at)] return / fit a

model
A" (s¢,a¢) = Q7 (s, a) — V7 (sy)
1 N T
VoJ ()~ 1 D) Vologmo(ailsie) A™(sic, air)
=1 #=1

What to fit?

T Improve the
Qﬂ(st, at) = 'T'(Sg, at) + Z Eﬂ-a [T(Stﬂ',at!) ‘St, at} pO“Cy

t!=¢

Q7 (st,ar) ~ (s, ar) + V7 (si41)
AW<St, at) ~ T(St, at) + Vﬁ<St_|_1) — VW(St)

0+ 0+ aVyJ(0)
} Just fit V7 (s;)!

74

Policy evaluation fit V"

Estimate the
return / fit a

T
Vﬂ (St) — Z Eﬁ'g [T(Sf’: at’)lst] model

/=t

J(Q) — Eslmp(sl)[vﬂ(sl)]

How can we evaluate a policy?

Improve the

Monte Carlo! N_o\N\ policy

: / 0 0+ aVyJ(0)
VT(sg) ~ Zr(st/,at/)
t'=t

Can’t actually re-set to every state,
T T : : : :
- 1 — so go with single-trajectory estimate
V7™(st) = N Z Z r(sy,ay)

=1 t'=t
75

Monte Carlo evaluation with function approximation

T
V7(st) =) r(sv,an)
=
| LT
Not quite V™ (s;) = N Z Z r(sy,ay)

=

but often good enoug

T
training data: { (si,t, Z r(sit, az’,t")) }

i =t
[J
Y

Yi.t

supervised regression: L(¢) = Z HVJ(Sz‘) — yill?

® ()
SR
AT X
0

O

AN
W17 7\

N\

Neural network can generalize!

76

Bootstrapping -

Monte Carlo target: Yit = Z T(Si,t’yai,t’)

t'=t
T

Ideal target: y; : = Z Eq, lr(sy,ay)|sit] = r(sit,ait) + Zgth Erglr(se, av)[si t41]
¢ =t

Training data become: {(si,t, T(S@',t, aq;,t) + Vf(sz‘,wfl))}

Yi,t
. . ~ » While biased, often better
i

Often referred to as“bootstrapping”

77

Policy Gradient to Actor-Critic

REINFORCE Algorithm

While not converged:
1. Sample {7*} from my(ay|s;)

2. VoJ(0) = 3, (X, Velogme(allsi)) (X, r(si,al))
3. 0<— 0+ aVyJ(0)

Batch Actor-Critic Algorithm
While not converged:
1. sample {s;,a;} from 7y (als)

fit Vg (s) to sampled reward sums

A

evaluate A™(s;,a;) = r(s;,a;) + Vg(sg) — Vi (s:)
VoJ(0) = > . Volog Wg(ai\si)fl”(si,ai)
6 6+ aVe(h)

A

0 0
oA AN
(//A\}X({/:{A&%A}\\{%ﬂ \
,“ 2\

N0

e 7774

"\\i\\gv',;;"“‘\.
VAY
\./,\\.

T No bias,
Yit — Z T(Si,t’aai,t’) <= higher
b=t variance
of A Bias,
Yit ~ ?"(Sz',t-,. ai,t) = quﬂ(si,t—l—l) <«— |ower
variance

L(¢) = Z HVJ(SO — yil|?

78

Discount Factor

Discount Factors

What if task is infinite horizon?

Yit = T(Sie,A5¢) + qur (Sit+1)

L(¢) = Z HVJ(Sz‘) - yi||2

— ‘A/qf can get infinitely large!

Vit 2 1(Sie,a0) + YV (Si441); v € [0,1] (usually 0.95 - 0.99)

1.) y reduces variance by de-emphasizing uncertain future events

2.) Decreasing y increases bias but reduces variance
3.) Better to get rewards sooner rather than later (might reach terminal state)

4.) What | do now impacts the near future more than the distant future

80

Discounts in the gradient
Vit (S a:0) + YV (Si041); v € [0,1] (usually 0.95 - 0.99)

_ Z H‘A/(;T(Sz’) PTE » Methods now apply to infinite horizon cases.

Monte-Carlo, no critic:

VQJ sze 10g7T9 A; t|Sz t)(Z (Sz ty Ay t’))

zltl t'=t

With critic:

T

N
1 A .
Vo (6) % <= D> Volog mo(ailsie) (r(sieais) + 7V (siee1) = Vi (s00)
=11

=1 v . J

A" (Si,ta ai,t)

81

Actor-critic algorithm Design

* Batch or online, architecture choices
* Architecture choices

Actor-critic algorithms (with discount)
Batch Actor-Critic Algorithm:

While not converged:
1. sample {s;,a;} from 7y (als)
2. fit ‘A/QZT (s) to sampled reward sums
3. evaluate A™(s;,a;) = r(s;, a;) + ”yf/g(s;) - Vg(sz)
4. VoJ(0) = > . Vg logw@(ai|s7;)fl”(si,ai)

5. 0 «— 0+ aVyJ(0) Policy Gradient: Need to run to end of episode

Actor-Critic: Can update in middle of episode

Unfortunately, need more to make Online Actor-Critic
actually work...

Online Actor-Critic algorithm:

While not converged:
1. take action a ~ my(als), get (s,a,s’,r)
2. update Vg(s) using target r + Wg(s’)
3. evaluate A™(s,a) = r(s,a) + ‘A/;;T(S’) — A(;T(s)
4. VoJ(0) = > . Vglog mo(als)A™ (s, a)
5. 0 <— 0+ aVyJ(0)

83

Parallelization

» Parallelization needed to get enough samples for

Online Actor-Critic algorithm:
batches

While not converged:

» Asynchronous: technically incorrect, but usually
works in practice and faster.

. take action a ~ we(a\) get (S a, s’ 7")

1
2. update ‘A/qf (s) using target r + ”yV¢ \

3. evaluate A™(s,a) = r(s,a) + qu (s’) = V5 (s) Work best with batches generated from multiple (parallel) workers
4. VoJ(0) = 3. Vglogmy(als)A™ (s, a) /

5. 0 +— 0+ aVyJ(0)

Synchronous I I I I Asynchronous
I
Get (s,a,s’,r)
A1 R Ak t
B Update 0 p—
A\ 4

<€

84

Architecture Design

Two Networks

/
A“‘
SIOQ /

//,;“‘v. /,,‘A ‘\\ /1 AR \\

V/I'A A\\\v

« \\\V""‘ V//'

0

A\\\'llnA (

r i}‘"”& \\\\\‘ /A‘
N

— 7T\ S, A

‘ A
1/," A\\\} / I» “\\ v/

d \\\V""‘ V//'

One Network

0% O \
%4 ¥o/4'/:6 N Y, 10‘\\ \
\V" ‘\\.!4’/'&;\3-. v'*\

\\\V”" V//'

» Simple, stable, no shared features

> Less stable, but also less features

» How to prevent interference between
different objectives?

85

Bias-variance tradeoff

* Generalized Advantage Estimation

Critics as state-dependent baselines

N T
1 £ %
Actor-critic: VyoJ(0) =~ N Z Z Vologmg(a; ¢|sit) (T‘(Si,t, a;)+ 7V¢Z’ (si,t+1) — V(,Zr (Si,t))

i=1 t=1

» Lower variance (from critic)
» Biased (assuming critic is imperfect)

N T
1
Policy gradient: VyJ(0) ~ ~ Z Z Vologmg(a; ¢|si¢) ((Z v (s, ai,t/)> — b)

1=1 1=1 t'=t

» Higher variance (single-sample estimate)

Can we use V; without introducing a bias? > Unbiased

T
VQJ Z Z VQ 10g 0 az t‘sz t ((Z ’}/t/_tT(Si’t/, aiyt/)) — ‘A/ggr (Si,t)) » No bias
i=1 i=1 =t > Lower variance!

87

Eligibility traces, n-step returns

AT (se, ar) = r(se,ae) + YV (se41) — V (se) Afrc(se,ar) =30 7" tr(sw,ap) — VI (se)
Bias, low variance No bias, higher variance
Can we combine these two to control the trade-off between bias and variance?

Smaller variance

Bigger variance

Cut before variance gets too big!

AT (s¢,ay) = Zii’; vt (s, ap) + 7”‘7@? (Stn) — VJ (st) (Choosing n > 1 often works better)

AR\ N

88

Generalized Advantage Estimation

How do we know where to cut? Can we balance multiple cuts?

1 t+n ¢/ — ~ ~
AZ(Sta at) — Lt =t ’Yt t"“(Stfa at’) + ’YanZT(StJrn) — VQZT(St)
ﬂE‘-AE(St: a;) = Z:j:l wnﬁ;i(st, a;) Weighted combination of different n-step returns

How should we choose our weights?
Generally prefer reducing variance (cutting earlier) —_—> W, X ol

AT ag (s, ar) = _VJ(St) + (st ar) + (1 — A) A¢W(St+1) + A(r(st41,ai41) +
V(1 =NV (st12) + Ar(sir2,ai42) + ...

Can re-write as Actor-critic advantage estimate

AE&E(St?at) — Z;c;t(’)(k)t’_tétf Where 5#‘ = T(Stf! at:) —|— '7.‘1\/(;1-(53!—1’—1) — Vq;r(st;) J. Schulman et al. High-

Dimensional Continuous
Control Using Generalized

\fy, A both contribute to bias-variance tradeoft! Aduantoge Sstimations. ankiv

1506.02438.
89

Summary: Actor-Critic Learning

Actor-critic algorithms
e Actor: policy
e Critic: value
Policy evaluation
* Via a value network
Discount factors
* Enable infinite horizon applications
* Used for variance reduction
Actor-critic algorithm design
* Batch or Online
e Architecture choices
State-dependent baselines
* Generalized Advantage Estimation

Estimate the
return / fit a
model

Run the policy
(generate samples)

t Improve the
policy

0+ 0+ aVeJ ()

90

Advanced Policy Gradient

* VPG, TROP, PPO

Vanilla Policy Gradient

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters fl,, initial value function parameters ¢y

2 for k=10.1,2,.. do
3 Collect set of trajectories Dy, = {7;} by running policy 7, = x(0;) in the environment.
4: Compute rewards-to-go R,.
5 Compute advantage estimates, A, (using any method of advantage estimation) based

on the current value function Vj, .
6: Estimate policy gradient as

| T
g.‘i = =T vﬁ- I.L'IE_'; ?L‘ﬁl[ﬂr|&'r) |Ig* ;“1!.
Dy 39D
7Dy t=0
7. Compute policy update, either using standard gradient ascent,
By = Ok + arge,

or via another gradient ascent algorithm like Adam.

& Fit value function by regression on mean-squared error:
1 z 2\ 2
i r
@h41 = Arg min E E ('Lfd,[.‘:';} - Rf) .
- @ |D&|T '
rEDy t=0

typically via some gradient descent algorithm.

9: end for

Spinning Up page

Reduce bias through use of causality,
baselining

Can use Monte Carlo, bootstrapped,
or hybrid (e.g. GAE) advantage
estimates

Monte Carlo estimates are unbiased
but higher variance than boostrapped
Actor-Critic refers to the use of at least
some bootstrapping in baseline
network

— On-policy

— Continuous or discrete actions

92

https://spinningup.openai.com/en/latest/algorithms/vpg.html

. . . Slide Credit: Levine CS285
Comparing Policies

Policy gradient as policy iteration o -x._ .., [vast,at)
J(8) = T(0) = J(O) — Eagrp(so) [V™ (50) :

= J(0) = Ernpyi(r) ZVtV”" Z V(s]

= J(O,) 4+ ETNP()/(T) Z ’yt St+1 ol G (St))
[t=0

= E ’yt'r(st,at)

M2

+ ETNpgl (7)

X V™) — V™ (St))]

t=0

TNPe'(T)
| ¢

I
o

2 I1Me

= Errpy(r)

“r(se,ar) + V™ (s¢41) — V™ (St))]

~~
o

= ETN[)HI (T) Z thAT"() S at
Lt=0

93

Slide Credit: Levine CS285
Comparing Policies

Policy gradient as policy iteration

(0,) - = ‘T~p9 /(1) [Z 7tA (st,a¢)]

expectation under 7y j advantage under 7y

E’r~p9/ (1) [Z ’ytAﬂ-o (Sta at)] Z ESthg (St) atNTl'e (at|St) [tA ¢ (St7 at)]]
t

Tror\ At |S 7
= ZEstho (St) [atwwe(at|st) [£ (tl t)'YtA o(st’at)]]

J mo(at|st)

is it OK to use py(s¢) instead?

93

Slide Credit: Levine CS285
Comparing Policies

lgnoring distribution mismatch?

?
mo (atlst) 4 H [[rf)'(at|3t) t AT ”
ES ~ 1 (St Eat~7r at St Aﬂ-g S ?a ESt St air~Tglat St A 2 S 7a
zt: t~Pgr (St) [o(atlst) |:7T9(at|st) ty At E : ’) o(atlst) o (ay|st) (st,at)

\ J
|
why do we want this to be true? A(Gl)
JO)—JO)~A) = 0« arg max A(6) 2. Use A7 (s, a;) to get improved policy 7’
0/
0 « arg maxz E - | o (arls:) YE AT (s¢, ap)
o < st~pe(st) Ea, mo(at|st) at|St ;

such that Dk, (mgr(at|st)||me(ar|st)) < €

for small enough e, this is guaranteed to improve J(0') — J(0)

93

Trust Region Policy Optimization (TRPO)

— Aims for fast, monotonic improvement
— Constrains the difference between previous

and current policy across observed states via
Kullback-Leibler (KL) Divergence.

— Optimizes constrained surrogate advantage:
9k—|—1 = argmaxg[,(ﬁk,@) S.t. DKL<9H0]€) S)

mo(als)

o, (als)

L(Qk’ (9) — ES,aNpek [ATk (S, a),]

Dir(0110k) = Ernp,, [DKL(WG('IS)|I7Tek('IS))]

— Approximations required to make a practical algorithm.

J. Schulman et al. Trust
Region Policy Optimization.
arXiv:1502.05477 (2015).

Spinning Up page

YOU

-~

£

R.POLICY'S IN
- i - ! ‘

@
Q}\"\‘ X . -
N ’

— On-policy

— Continuous or discrete actions

94

https://spinningup.openai.com/en/latest/algorithms/trpo.html

TRPO: Pseudocode

Algorithm 1 Trust Region Policy Optimization

1: Input: initial policy parameters fy, initial value function parameters ¢
2: Hyperparameters: KL-divergence limit §, backtracking coeflicient ¢, maximum number
of backtracking steps K

10:

for k=0,1,2,... do

Collect set of trajectories Dy = {7;} by running policy 7 = 7(f) in the environment.
Compute rewards-to-go R,.

Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vi, .

Estimate policy gradient as

gk = |’D | Z Z Vi log mo(ay|s:)] g, A,
k

T€D, t=0
Use the conjugate gradient algorithm to compute
ol 712
T =~ k Gk,

where [, is the Hessian of the sample average KL-divergence.
Update the policy by backtracking line search with

26
Opi1 =0y + o T h Tk
Ly HkZEk

where j € {0,1,2,..K} is the smallest value which improves the sample loss and
satisfies the sample KL-divergence constraint.
Fit value function by regression on mean-squared error:

(11 = arg min
@

typically via some gradient descent algorithm.

11: end for

95

J. Schulman et al. Proximal
Policy Optimization Algorithms.

Proximal POIICV Optimization (PPO) arXiv:1707.06347 (2017).
Spinning Up page

— Same motivation as TRPO: fast and

nearly monotonic improvement e . JION
— Simpler than TRPO; first-order i — S o
- I . 7 o o e
— Often works better than TRPO - [- i

— Constrains update to not change policy too

much, via either KL-divergence or clipping

— Clippi ly used.
ipping more commonly use s On-policy (approximately)

— Continuous or discrete actions

96

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html

PPO Clipped Objective

Policy: Value:
. Te(als) 2

I 0, 0) — AT AT _ __ Y/target

(S7aa ks) min (ﬂ_ek (a|s) & (Sva)7g(€7 & (S7a))) L(S) o (V¢(S) V)
where
e {(1 LA EADC Entropy (encourages exploration):

(1—-eA ifA<O H(s) = —Zw(a”s)logw(ai‘s)

curp A>0 At :

1L 1—e1 — Replace with integrals for continuous case

» Can use either combined or
separate policy, value networks

» Combine loss terms in former case,
separate in latter case
» Our PPO code does the latter

LC’LIP

97

PPO: Pseudocode for Two Flavors

Algorithm 1 PPO-Clip

1: Input: initial policy parameters), initial value function parameters ¢
2: for k=0,1,2,... do

3: Collect set of trajectories Dy = {7;} by running policy 7, = m(6) in the environment.
4: Compute rewards-to-go R;. X
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V, .
Update the policy by maximizing the PPO-Clip objective:
Op+1 = arg max Z me (To(as:) —— A% (84, ay), Q(E,Am’“(sf,m))) ;
\’Dk\T e " LACHED)
typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:
Ory1 = arg 111111 Z Z (V¢, (s¢)) ,
|D"|T €Dy, 1=0
k
typically via some gradient descent algorithm.
8: end for

Spinning Up page

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2.... do
for actor=1.2..... N do

Run policy 7y, in environment for T l‘llllt“sl‘ﬁ‘p‘s

Compute advantage estimates A, ..

end for

\-’;llf'

Optimize surrogate L wrt #, with K epochs and minibatch size M < NT

r?ukl 0
end for

98

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html

Clipped-Objective Policy Gradient

We used a slightly-modified version of the PPO
objective, performing similar clipping on a policy
gradient (rather than surrogate) objective:

Jeora () = Eq {min (log Tor (at|st)fl”(st, a),

log <Chp(w’lie)wé’(aﬂst))fl”(st,at))] 0.00

W@(at|St)

The result is a slightly more pessimistic method that _

consistently works better in continuous action
spaces:

o /o if no clipping

1/(1+¢€)

VJcora _

VJPPO if Clipping

HalfCheetah-v3 Episode Rewards

Mean Episode Reward
=
o
(e

0

0.25 0.50

0.75
Training Experiences % 10°

1.00

Ant-v3 Episode Rewards

DO = D
o 2)
) o e
o o o

Mean Episode Rewar

=

0.00 0.25 050 0.7 1.00

Training Experiences x10°

—— PPO

J. Markowitz,E.W. Staley. Clipped-Obijective
Policy Gradients for Pessimistic Policy
Optimization. arXiv:2311.05846v1. 2023.

Humanoid-v3 Episode Rewards

6000

S
o
=)
o

DO
=)
o
(a)

Mean Episode Reward

0
0.00 0.25 050 0.7 1.00

Training Experiences x10°

Walker2d-v3 Episode Rewards
5000
%
oz 4000
(]
"é 3000
32000

{ o=t
3 1000
ol

0
0.00

0.75
Training Experiences x 108

0.25 0.50 1.00

— COPG

99

Fundamental Challenges in Policy
Optimization

* Fractal Landscapes
* Mollification

Policy Optimization in Continuous Action Spaces méax J(Q)

Based on Policy Gradient:
* Use experience to approximate VyJ(f) = g

. N T i AN C
g = % D im1 2it—o V0 log':rg(ag) | si)) R£)

LIIJ'dEtE: l';'_a,;_|_1 = f. + 1 q \ﬁg Rgﬂ — Z::t ,},k—triﬂ

TS e e som s ss st s sn o na s et e - cumulative return

S¢
(Ty *LAEEﬁt? mo(als) iﬁ Many Challenges:
 Estimation variance
action Non-smoothness
(1t .

Fractal landscape

s [Mollification
:, — Environment
TP - i1 L .

101

Fractal Landscapes in Policy Optimization

* Goal: maxg J(0) := Erysonp Dm0V Te(5¢, a1)]
* Approach: Opi1 = Ok +nVeJ(0)

* Challenge: Optimization landscapes are not always “nice”

|
| 12800 7 1000
Wil 1T 2600 I
L 12400 T 995
ey N T
‘2000< 7 =
AV 11800 oo -
‘ . T1600
| 1400 > T 980
- T1200

102

Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, NeurlPS 23

Mollification of Policy Gradient

* Goal: ng.X J(Q) = ESDNp,a,gN'Jrg (so0) [Qﬂe (SU: a’U)i|

*Policy: a ~ N(ug(s),0%1)

* Policy Gradient

Ors1 = O +1VeJ(0)

Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24 103

Agustin Castellano Sohrab Rezaei Jared Markowitz
@ JOHNS HOPKINS @ JOHNS HOPKINS @ JOHNS HOPKINS

UNIVERSITY UNIVERSITY APPLIED PHYSICS LABORATORY

Nonparametric policy improvement in
continuous action spaces

A. Castellano, S. Rezaei, J. Markovitz, and E. Mallada, Nonparametric Policy Improvement for Continuous Action
Spaces via Expert Demonstrations, 2025, submitted to Reinforcement Learning Conference.

104

Problem Setup

Goal: find optimal policy

max J () = Bagmp,ageora(so) | @ (50, 0)]

105

Problem Setup

Goal: find optimal nonparametric policy

IIlIE}X J(WD) ‘= Esn’”ﬂ,aﬂwma (s0) [QWP (50: aﬂ)]

Data set: D = {(s;, ai, QJ}E'I Qi = >, 7'r(st,ar)

Assumptions:
Optimal Q* is smooth: |Q*(s,a) — Q*(s',a’)| < L(ds(s,s') + da(a,a’))
Deterministic dynamics: S;11 = f(Sf, ﬂt) t distance f
Expert data: we have D = {(si,a;, Q:)}2), where a; =7*(s;); Qi = Q*(si,a;)

105

Expert data: we have D = {(s;, ai, Q:)}}2), where a; = 7%(5,); Qi = Q*(s4,as)

1. How can we use these transitions to learn a nonparametric policy?
2. What guarantees can we get when we add more transitions?

3. Where should we add transitions to improve performance?

Overview of our method

Add expert trajectory P Np

Get dataset
D
D = {(si,a5,Q:)}}2!

T = (So,aoaQo,Sl,al,Qb---)

Build lower bound -

—>7(s) A argmajc Qu (s, a)—> Sufficient data?
ac

- Q)
*

si, a;, Q) T

Yes

107

1. How can we use these transitions
to learn a nonparametric policy?

Building bounds & Nonparametric Policy
Expert data: we have D = {(si,ai, Q:)}2) , where a; = 7*(s;); Qs = Q*(s4,a;)

* Use the data to define lower bounds on optimal values:

Vib(s) £ max {Q;— L-ds(s,s;)} Qu(s,a) & max {Qg — L. (ds(ﬂ, si) + dA(ﬂ,ﬂri))}

1<i<|D)| 1<i<|D|

* Nonparametric Policy: R
m(s) = argmax Q(s,a) =a;
ac.A

* Remark: Note argmax always gives actions in dataset (s a4, Qi)

* Question: What can we say about V7 (s)?

109

Nonparametric policy improves over lower bound

Policy Evaluation:
* Nonparametric 7 satisfies Vs € §:

Vib(s) < V7(s) S V7(s)

Policy Improvement:

* Given data sets D, D' with D c D’
More data = better lower bounds (s, € t_] (! Ve :I
' S8

< !
VEEI=SVsEMVSESE - mmprovement on

V() < VT (s') Vs € D'\D

* Strict on neighbors of new data: Vs € N(s')

- F 1 f
N{s") % o'strictly better than T

110

Add expert trajectory p No

Get dataset
D
D = {(s;, as, Qz)}l=|1

T = (SOaa’O’QO"Sl)alana ..)

Build lower bound .
: - Greedy policy

—>7(s) A argmeaj(Quw (s, a)—> Sufficient data?
a

- Ol)

* (s,a,Q) T

Yes

111

1. How to learn a policy?

Build lower bound Greedv poli
. reedy policy Policy Evaluation

—*n(s) = argmax Qu(s,0)—> 11 (5) < V7 (s)

Get dataset
D
— {(Sia a;, Qz)}'l:ll

strict improvement

2. What guarantees with more transitions?

More data = better lower bounds

Vib(s) < Vip(s) VseS
VT(s') V™ (s) Vs' € D\D

Improvement on 7
added points vl

i
~— 71 strictly batter than T

3. Where to add transitions?

* Only where sufficient improvement is guaranteed: A(s) := Vin(s) — Vin(s) > ¢

Vib(s) < V7(s) < V7(s) < Vip(s)

112

Dataset Size

5000

4000

3000

2000

1000

Results on 1qr 2

Experiments

— NPP i o
Gap achieved (whp.) | | |
3 ol 2l

50

100 150 200
Episode

Number of balls

‘/./ 1%t m actuated

10°

1gr 2 1

_1:

-==~ Targetgap (£)

Gap achieved (w.h.p.)

10" 10' 10°
Episode

aposid3

* Weusethelgr n m environments from DeepMind’s Control Suite

lgr 6 2

=== Means
—-— Medians

° .L

184

-140 -120 -100 -80 -60 -40 -20 0
Suboptimality distribution: V™ -V *
113

Experiments

* Weusethe 1gr n m environments from DeepMind’s Control Suite

* Resultsonlqr 2 1:

5000
4000
S
O 3000
9
(4}
8 2000
a
1000
— NPP i | 55 ;
0 Gap achieved (whp) | | !

0 50 100 150 200
Episode

e Remarks:

10

-== Targetgap (£)

Gap achieved (w.h.p.)

10" 10' 10°
Episode

aposidg

° .L

184

-140 -120 -100 -80 -60 -40 -20 0
Suboptimality distribution: V' —V *

* Incremental learning: No catastrophic forgetting, or oscillations
* Improvement across the entire state space (not in expectation)
* Only valuable data is added (harder to find at times passes)

113

Incremental Learning

after 10 episode... after 100 episode... after 1000 episodes...

after 30K+ optimal control

114

Incremental Learning

after 30K+ optimal control

500000 | == NPP (ours)
——- Gap achieved w.h.p.
i
400000
i —_
i W
£ |
& 300000 > i
n | 0 !
a !) |
T ! . [
0O 200000 [| > [T
[I Q. T
i o i
i ° i
| 10 |
100000 : —— NPP (ours) !
i — SAC i
: - = Target gap (£) :
0 i i i ——- Gap achieved w.h.p. T
i j i i 107 T}
0 5000 10000 15000 20000 25000 30000 10" 10° 10° 10*

Episode Episode

Thanks!

Enrique Mallada
mallada@jhu.edu
http://mallada.ece.jhu.edu

115

	Default Section
	Slide 1: Foundations of RL Lecture 9: Modern RL Algorithms
	Slide 2: Sources
	Slide 3: What is Reinforcement Learning?
	Slide 4: What is Deep Reinforcement Learning?
	Slide 5: Evolution of DRL Mirrors Evolution of Computer Vision
	Slide 6: Anatomy of an RL Agent
	Slide 7
	Slide 8: Taxonomy of DRL Approaches
	Slide 9: Extensions
	Slide 11: Canonical Examples of DRL
	Slide 12: Deep Q Learning for Atari
	Slide 13: DQN Learning Breakout
	Slide 14: AlphaGo Zero, AlphaZero: Policy-Guided Monte Carlo Tree Search
	Slide 15: AlphaStar
	Slide 16: OpenAI: Solving a Rubik’s Cube with a Robotic Hand
	Slide 17: RL for Fine-Tuning Large Language Models
	Slide 18: RL for Fine-Tuning Large Language Models
	Slide 19: RL for Fine-Tuning Large Language Models
	Slide 20: Implementation Tips 1
	Slide 21: DRL Implementation
	Slide 22: What is required upfront?
	Slide 23: IDEs / Editors
	Slide 24: Required Software Components
	Slide 25: A few words about parallelization
	Slide 26: Open-Source Code
	Slide 27: Learning a Policy
	Slide 28: Learning a Policy
	Slide 29: Learning a Policy
	Slide 30: Learning a Policy
	Slide 31: Finite Horizon Case
	Slide 32: Infinite Horizon Case (Stationary Distribution)
	Slide 33: Structure of a DRL Algorithm
	Slide 34: Algorithms for Learning Policies
	Slide 35: General RL Learning Cycle
	Slide 36: Expectations and Recursion
	Slide 37: Definitions: Q and V
	Slide 38
	Slide 39: Types of RL Algorithms
	Slide 40
	Slide 41: Policy Gradient
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Model-Based DRL (via Backprop)
	Slide 46: Cost Considerations
	Slide 47: Matching Algorithms with Categories
	Slide 48: Why are there so many RL algorithms?
	Slide 49: On-Policy vs. Off-Policy
	Slide 50: Sample Efficiency By Method
	Slide 51: Considerations: Stability and Ease of Use
	Slide 52: Comparison: Assumptions to Consider
	Slide 53: Basic Policy Gradient
	Slide 54: The Goal of DRL
	Slide 55: Finite Horizon
	Slide 56: Evaluating the objective
	Slide 57: Direct Policy Differentiation
	Slide 58: Direct Policy Differentiation
	Slide 59: Evaluating the Policy Gradient via Sampling
	Slide 60: Evaluating the Policy Gradient via Sampling
	Slide 61: Partial Observability
	Slide 62: Relation to Maximum Likelihood
	Slide 63: Some Intuition
	Slide 64: Example: Gaussian policies
	Slide 65: Recap: Basic Policy Gradient
	Slide 66: Problems with policy gradient
	Slide 67: Problem: Variance
	Slide 68: Problem: Data Hungry
	Slide 69: Improving Policy Gradient
	Slide 70: Reducing Variance: Causality
	Slide 71: Reducing Variance: Baselines
	Slide 72: Analyzing the variance
	Slide 73: On-Policy Learning: Data Hungry
	Slide 74: Off-policy learning via importance sampling
	Slide 75: Off-policy policy gradient
	Slide 76: Recap: Improving the Policy Gradient
	Slide 77: Actor-Critic Algorithms
	Slide 78: Recap: Improving the Policy Gradient
	Slide 79: (Further) improving the policy gradient
	Slide 80: What about the baseline?
	Slide 81: Terminology Recap
	Slide 82: Fitting a value function
	Slide 83: Policy evaluation
	Slide 84: Monte Carlo evaluation with function approximation
	Slide 85: Bootstrapping
	Slide 86: Policy Gradient to Actor-Critic
	Slide 87: Discount Factor
	Slide 88: Discount Factors
	Slide 89: Discounts in the gradient
	Slide 90: Actor-critic algorithm Design
	Slide 91: Actor-critic algorithms (with discount)
	Slide 92: Parallelization
	Slide 93: Architecture Design
	Slide 94: Bias-variance tradeoff
	Slide 95: Critics as state-dependent baselines
	Slide 96: Eligibility traces, n-step returns
	Slide 97: Generalized Advantage Estimation
	Slide 98: Summary: Actor-Critic Learning
	Slide 99: Advanced Policy Gradient
	Slide 100: Vanilla Policy Gradient
	Slide 101: Comparing Policies
	Slide 102: Comparing Policies
	Slide 103: Comparing Policies
	Slide 104: Trust Region Policy Optimization (TRPO)
	Slide 105: TRPO: Pseudocode
	Slide 106: Proximal Policy Optimization (PPO)
	Slide 107: PPO Clipped Objective
	Slide 108: PPO: Pseudocode for Two Flavors
	Slide 109: Clipped-Objective Policy Gradient
	Slide 110: Fundamental Challenges in Policy Optimization
	Slide 115: Policy Optimization in Continuous Action Spaces
	Slide 117: Fractal Landscapes in Policy Optimization
	Slide 118: Mollification of Policy Gradient
	Slide 119: Nonparametric policy improvement in continuous action spaces
	Slide 120: Problem Setup
	Slide 121: Problem Setup
	Slide 122
	Slide 123: Overview of our method
	Slide 124
	Slide 125: Building bounds & Nonparametric Policy
	Slide 126: Nonparametric policy improves over lower bound
	Slide 127
	Slide 128
	Slide 130: Experiments
	Slide 131: Experiments
	Slide 133: Incremental Learning
	Slide 134: Incremental Learning
	Slide 135

