
Foundations of RL
Lecture 9: Modern RL Algorithms

Enrique Mallada

Goals:
• Give an overview of Deep RL methods

• Deep Policy Gradient Methods



Sources

• Courses from the Experts:
1. Sergey Levine, Deep Reinforcement Learning, Decision Making, and Control (2023)

2. David Silver, Reinforcement Learning (2015)

3. Jared Markowitz, Applied Physics Lab Lectures (2023)

• Textbook: 
Richard S. Sutton and Andrew G. Barto.  Reinforcement Learning: An Introduction.  Available online at 
http://www.incompleteideas.net/book/the-book-2nd.html

• OpenAI: Spinning Up in Deep RL

• Research papers will be cited throughout

➢We will heavily leverage Levine’s course, particularly for theory.

2

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html


What is Reinforcement Learning?

Goal: Select the actions that maximize future expected rewards

3



What is Deep Reinforcement Learning?

• Deep neural network performs 
function approximation for the 
agent.

• Greatly increases the versatility and 
scalability of RL

4



Evolution of  DRL Mirrors Evolution of Computer Vision

Image Credit: Levine UC Berkeley Course

5



Anatomy of an RL Agent

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

Slide sequence credit: Levine UC Berkeley Course
6



The four main types of DRL algorithms

1. Policy gradients: directly differentiate the objective; perform gradient 

ascent on parameterized policy

2. Value-based: no explicit policy representation; instead estimate Q or 

value function of the optimal policy

3. Actor-critic: estimate Q or value function of current policy; use it to 

improve policy

4. Model-based: learn parameterized representation of state transition 

model, use it either for planning or to improve a policy (e.g., via synthetic 

experiences)

7



Taxonomy of DRL Approaches

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

8

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


Extensions

• There are numerous extensions to the basic RL formulation that may be used to 
address operational needs:

• Transferability:
• Transfer learning: fine-tuning

• Multi-task RL: learn multiple tasks at once

• Meta-learning: learn to learn

• Unknown reward function:
• Inverse RL: learn reward function

• Learning from static data:
• Offline RL: learn without a simulator

• Safety Concerns:
• Constrained RL: constraint on objective (e.g. Lagrangian formulation)

• Distributional RL: carry distribution through value-based methods
Image credit: C. Finn, P. Abbeel, and S. Levine, 

“Model-agnostic meta-learning for fast adaptation of 

deep networks,” arXiv:1703.03400v3 (2017).

9



Canonical Examples of DRL

• Deep Q-learning reaches human level on Atari suite

• AlphaZero masters Chess, Shogi, and Go

• AlphaStar bests human professionals in StarCraft

• OpenAI programs robotic hand to solve Rubik’s Cube

• RL for tuning Large Language Models (RL from Human Feedback) 

10



Deep Q Learning for Atari

The level of professional humans is met on 49 of 57 Atari games with the same network architecture, learning strategy, 
and hyperparameters.

V. Mnih et al. Human-level control through deep 

reinforcement learning. Nature 518, p. 529–533 (2015).

11



DQN Learning Breakout

12



AlphaGo Zero, AlphaZero: Policy-Guided Monte Carlo Tree Search
“Plays like a human on fire”

• D. Silver et al. Mastering the game of Go without human knowledge. 
Nature 550, p 354–359 (2017).

• D. Silver et al. A general reinforcement learning algorithm that masters 
chess, shogi, and Go through self-play. Science Vol. 362 Issue 6419, p 1140-
1144 (2019).

13



AlphaStar
A “Grand Challenge” for AI Research

Image credit : DeepMind Blog

O. Vinyals et al. Grandmaster 
level in Starcraft II using multi-
agent reinforcement learning. 
Nature, 575, 350-354 (2019).

14

https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii


OpenAI: Solving a Rubik’s Cube with a Robotic Hand

In many applications, transferring from simulation to reality is the dominant challenge.

Akkaya et al.  Solving Rubik’s Cube with 
a Robot Hand. arXiv:1910.07113 
(2019).

15



RL for Fine-Tuning Large Language Models
Reinforcement Learning from Human Feedback (RLHF)

Credit: Hugging Face

16

https://huggingface.co/blog/rlhf


Credit: Hugging Face

RL for Fine-Tuning Large Language Models
Reinforcement Learning from Human Feedback (RLHF)

16

https://huggingface.co/blog/rlhf


Credit: Hugging Face

RL for Fine-Tuning Large Language Models
Reinforcement Learning from Human Feedback (RLHF)

16

https://huggingface.co/blog/rlhf


Implementation Tips 1

17



DRL Implementation

• Requirements

• Basic components

• A few words about parallelization

• Open-source code

18



What is required upfront?

• Sufficient compute
• Typically want a lot (101 – 103) of parallel cores

• GPUs useful for larger network architectures

• Permission, ability to run deep learning software

• Will need to iterate- no one trains their best agent on the first try

• Fast simulation that appropriately captures system dynamics
• Level of realism required depends on application

• Speed required depends on compute; usually need faster than real-time

• Need a clear picture of how the agent will interact with the rest of the system

• Time to iterate, test
• Less of a well-established recipe than other types of ML

• Lots of factors impact agent performance

• Challenging to bridge sim-to-real gap

19



IDEs / Editors

• Obviously feel free to use whatever you’re 
comfortable with.

• It has a particularly accessible debugger, 
which I have found useful.

20



Required Software Components

• Environment
• Usually follows OpenAI Gym API

• Contains simulation of the world the agent is 
interacting with

• Agent
• Contains decision-making code, including learning 

scheme

• Network/Model
• Optimized and called by the agent for decision 

making

• Utilities (“Other”)
• Whatever helper functions are needed

21



A few words about parallelization
• DRL can be computationally expensive; parallelization 

can help.

• While GPUs can be useful, many times you can get away 
with CPU workers

• The networks are not typically as large as in supervised learning

• There are numerous ways to parallelize DRL code
• MPI, multiprocessing, pickle passing, Dask, Ray, etc. 

• These approaches exhibit tradeoffs in terms of flexibility, 
transparency, robustness, scalability, and applicability to 
different compute resources.

• MPI is probably the best first thing to try, as it scores 
highly in all categories.

➢The best option depends on the particular project. 

22



Open-Source Code

• As mentioned before, it can be useful to write your own code.

• However, in many cases you can save time by using at least some 
open source components.  If you’re careful, this can be the best 
route.

• Good open source options include
• OpenAI Spinning Up (https://github.com/openai/spinningup)

• Stable-baselines3 (https://github.com/DLR-RM/stable-baselines3/)

• RLLib (https://docs.ray.io/en/latest/rllib/index.html)

• Unity ml-agents (https://github.com/Unity-Technologies/ml-agents)

• While the problem sets in this course will require you to work 
with the class codebase (to which you will contribute!), you are 
free to use whatever you want on your project.

➢The best option depends on the particular project. 

23

https://github.com/openai/spinningup
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://docs.ray.io/en/latest/rllib/index.html
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents


Learning a Policy
• The RL Objective

• Finite vs. Infinite Horizon

24



Learning a Policy
Fully observable
(for now)

Undiscounted
(for now)

24



Learning a Policy
Fully observable
(for now)

24



Learning a Policy
Fully observable
(for now)

24



Finite Horizon Case
Undiscounted
(for now)

25



Infinite Horizon Case (Stationary Distribution)

What if T ⟶ ∞?

26



Structure of a DRL Algorithm
• Sample Generation

• Return Estimation / Model Fitting

• Policy Improvement

Run the policy 
(generate samples)

Estimate 
the return / 
fit a model

Improve the 
policy

27



Algorithms for Learning Policies

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

28

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


General RL Learning Cycle

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

Slide sequence credit: Levine UC Berkeley Course

Key consideration: 
which part(s) are 
expensive?

29



Expectations and Recursion

30



Definitions: Q and V

Q-function:

Value function:

Undiscounted
(for now)

31



Using Q-functions and Value Functions

Method 1 (Q-learning): Improve policy by taking action with highest Q value and 
continuously refining Q estimate.

Method 2 (Actor-Critic): Continuously update policy to increase the probability of taking 
good actions, where “good” is defined as                           . 

➢ We will come back to these!

32



Types of RL Algorithms
• Considerations for when to use what

33



The Four Main Types of RL Algorithms

1. Policy gradients: directly differentiate the objective; perform gradient ascent 
on parameterized policy

2. Value-based: no explicit policy representation; instead estimate Q or value 
function of the optimal policy

3. Actor-critic: estimate Q or value function of current policy; use it to improve 
policy

4. Model-based: learn parameterized representation of state transition model, 
use it either for planning or to improve a policy (e.g. via synthetic experiences)

34



Policy Gradient

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

➢ Yields unbiased but high-variance estimates of gradients

➢ Variance reduction measures required for practical application

35



Value-Based Algorithms

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

36



Actor-Critic: Value Functions + Policy Gradients

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

37



Model-Based RL algorithms

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

1. Use the model to plan
2. Backpropagate gradients into policy
3. Use the model to learn a value function

A few options…

38



Model-Based DRL (via Backprop)

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

39



Cost Considerations

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

cheap, fast

expensive, slow

Real data:

➢ Expensive

➢ Real-time

Simulated data:

➢ Often cheap

➢ Often fast

cheap, fast

expensive, slow

40



Matching Algorithms with Categories

• Policy Gradient:
• REINFORCE (“Vanilla” policy gradient)

• Natural policy gradient

• Value Function Fitting:
• Q-learning (DQN)

• Temporal difference learning

• Fitted value iteration

• Actor-Critic:
• Asynchronous advantage actor-critic (A3C)

• Soft actor-critic (SAC)

• Trust region policy optimization (TRPO)

• Proximal Policy Optimization (PPO)

• Model-based RL:
• Dyna

• Guided policy search

41



Why are there so many RL algorithms?
Can’t we just use the best?

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

➢ What is the “best” approach depends on the 
particular problem and the constraints of the 
user:

1. System characteristics
• Continuous or discrete
• Stochastic or deterministic
• Episodic or infinite horizon
• Where is the complexity?

2. User constraints
• Sample efficiency
• Stability
• Ease of use

42



On-Policy vs. Off-Policy

• A key characteristic of a policy is its sample efficiency.

• Related to this, algorithms fall into two broad categories:
1.On-policy: can only learn/improve from data collected using current policy

2.Off-policy: can learn/improve using data collected from other policies

• Off-policy algorithms are generally more sample efficient.

43



Sample Efficiency By Method

More efficient Less efficient

Off-Policy On-policy

Model-based 
shallow RL

Model-based 
deep RL

Off-policy 
Q-function 
learning

Adapted from Levine CS285

Actor-critic 
methods

On-policy 
policy gradient 
algorithms

Evolutionary or 
gradient-free 
algorithms

Maximizing sample efficiency and minimizing wall time are not the same!

44



Considerations: Stability and Ease of Use

• Does the algorithm I picked converge every time?  To something useful?

• Q Learning / value function fitting
• Fixed point iteration

• Minimizes error of fit (“Bellman Error”): not the same as reward!

• Not guaranteed to converge in nonlinear case

• Model-Based
• Minimizes error of fit- will converge

• Better model doesn’t necessarily imply a better policy!

• Policy Gradient
• The only method that performs gradient ascent on the true objective

• Also the least sample-efficient

45



Comparison: Assumptions to Consider

• Common assumption #1: full observability
• Assumed for value function fitting, model-based methods

• Reliance on it can be mitigated through use of recurrence

• Common assumption #2: episodic learning
• Typically assumed by pure policy gradient methods, model-based RL methods

• Common assumption #3: continuity or smoothness
• Assumed by continuous value function learning methods, model-based RL

46



Basic Policy Gradient

47



The Goal of DRL
Fully observable

(for now)

Undiscounted

(for now)

48



Finite Horizon

49



Evaluating the objective

50



Direct Policy Differentiation

51



Direct Policy Differentiation

Look at joint distribution over history:

Take log of both sides…

Evaluate gradient…

51



Evaluating the Policy Gradient via Sampling

Improve the 
policy

Typically works poorly… 

52



Evaluating the Policy Gradient via Sampling

Improve the 
policy

52



Partial Observability

Can we use the policy gradient in a partially-observed setting?

Just substitute observation for state!

Reward still depends 

on state; we just don’t 

observe it directly.

➢ Yes.  Never used an assumption of policy depending on state; 

     can just be a mapping conditioned on what we have:

53



Relation to Maximum Likelihood

Policy Gradient:

Maximum Likelihood:

54



Some Intuition

➢ Makes good trajectories more likely

➢ Makes bad trajectories less likely

➢ Formalization of trial and error!

55



Example: Gaussian policies

56



Recap: Basic Policy Gradient

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

• Directly differentiates RL objective

• Can be evaluated via sampling

• Works under partial observability

• Can be seen as making good trajectories 
more likely, bad trajectories less likely

57



Problems with policy gradient
• High variance, sample inefficiency

58



Problem: Variance

Animation credit: Levine UC Course

• Problem: policy gradient has high variance!
➢ Often leads to noisy gradient estimates

59



Problem: Data Hungry

➢ We can’t get around this sampling
➢ Because NN updates slowly, this can be 

highly inefficient!

60



Improving Policy Gradient
• Leveraging causality, baselines, off-policy policy gradient

61



Reducing Variance: Causality

➢ Smaller gradients, smaller variance!

62



Reducing Variance: Baselines

➢ Subtracting a baseline is unbiased in expectation!
➢ It turns out that the mean reward is a good baseline to use.
➢ If you want the baseline that reduces variance the most, choose

Note: varies by parameter dimension

63



Analyzing the variance

➢ We can also use a neural network to 
estimate a state-dependent baseline!

➢ This is also free of bias (more later).

64



On-Policy Learning: Data Hungry

➢ We can’t get around this sampling

➢ Because NN updates slowly, this 

can be highly inefficient!

65



Off-policy learning via importance sampling

Importance sampling:

66



Off-policy policy gradient

➢ Increases variance!
➢ Need further tricks to make this tenable; will re-visit.

67



Recap: Improving the Policy Gradient

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

• Reducing variance
• Leveraging causality

• Adding a baseline

• Reducing data needs
• Off-policy policy gradient

68



Actor-Critic Algorithms

69



Recap: Improving the Policy Gradient

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

➢ Actor-critic is about estimating expected reward to-go.

70



(Further) improving the policy gradient

Lower variance!

71



What about the baseline?

Could average over trajectories

Reduce variance more by 

using state-dependent 

baseline (gradient still 

unbiased)

72



Terminology Recap

Estimate the 
return / fit a 

model

Improve the 
policy

this estimate can be used to reduce variance!

Updating policy:

Recall:

Unbiased but high-variance (single-sample)

73



Fitting a value function

Estimate the 
return / fit a 

model

Improve the 
policy

What to fit?

74



Policy evaluation

Run the policy (generate 
samples)

Estimate the 
return / fit a 

model

Improve the 
policy

75



Monte Carlo evaluation with function approximation

76



Bootstrapping

What we want

Biased, but available

(previous fitted value)

➢ While biased, often better 

because lower variance!

77



Policy Gradient to Actor-Critic

No bias, 

higher 

variance

or
Bias, 

lower 

variance

78



Discount Factor

79



Discount Factors

Finite Horizon Infinite Horizon

Solution: discount factor

Intuition: 
 1.) 𝛾 reduces variance by de-emphasizing uncertain future events 
 2.) Decreasing 𝛾 increases bias but reduces variance
 3.) Better to get rewards sooner rather than later (might reach terminal state)
 4.) What I do now impacts the near future more than the distant future

80



Discounts in the gradient

Monte-Carlo, no critic:

With critic:

➢ Methods now apply to infinite horizon cases.

81



Actor-critic algorithm Design
• Batch or online, architecture choices

• Architecture choices

82



Actor-critic algorithms (with discount)

• Policy Gradient: Need to run to end of episode
• Actor-Critic: Can update in middle of episode
• Unfortunately, need more to make Online Actor-Critic 

actually work… 

83



Parallelization

𝜃

𝜃𝑖

𝜃

➢ Parallelization needed to get enough samples for 
batches

➢ Asynchronous: technically incorrect, but usually 
works in practice and faster.

84



Architecture Design

Two Networks

One Network

➢ Simple, stable, no shared features

➢ Less stable, but also less features
➢ How to prevent interference between 

different objectives?

85



Bias-variance tradeoff
• Generalized Advantage Estimation

86



Critics as state-dependent baselines

➢ Lower variance (from critic)
➢ Biased (assuming critic is imperfect)

➢ Higher variance (single-sample estimate)
➢ Unbiased

➢ Use critic as baseline
➢ No bias
➢ Lower variance!

87



Eligibility traces, n-step returns

88



Generalized Advantage Estimation

Weighted combination of different n-step returns

How do we know where to cut?  Can we balance multiple cuts?

How should we choose our weights?

Generally prefer reducing variance (cutting earlier)

Can re-write as

where

Actor-critic advantage estimate

J. Schulman et al. High-
Dimensional Continuous 
Control Using Generalized 
Advantage Estimations. arXiv: 
1506.02438.

89



Summary: Actor-Critic Learning

Run the policy 
(generate samples)

Estimate the 
return / fit a 

model

Improve the 
policy

• Actor-critic algorithms
• Actor: policy
• Critic: value

• Policy evaluation
• Via a value network

• Discount factors
• Enable infinite horizon applications
• Used for variance reduction

• Actor-critic algorithm design
• Batch or Online
• Architecture choices

• State-dependent baselines
• Generalized Advantage Estimation

90



Advanced Policy Gradient 
• VPG, TROP, PPO

91



Vanilla Policy Gradient

➢ Reduce bias through use of causality, 

baselining

➢ Can use Monte Carlo, bootstrapped, 

or hybrid (e.g. GAE) advantage 

estimates

➢ Monte Carlo estimates are unbiased 

but higher variance than boostrapped

➢ Actor-Critic refers to the use of at least 

some bootstrapping in baseline 

network

Spinning Up page

92

https://spinningup.openai.com/en/latest/algorithms/vpg.html


Comparing Policies
Slide Credit: Levine CS285

93



Comparing Policies
Slide Credit: Levine CS285

93



Comparing Policies
Slide Credit: Levine CS285

93



Trust Region Policy Optimization (TRPO)
Spinning Up page

J. Schulman et al.  Trust 

Region Policy Optimization. 

arXiv:1502.05477 (2015). 

94

https://spinningup.openai.com/en/latest/algorithms/trpo.html


TRPO: Pseudocode

95



Proximal Policy Optimization (PPO)
J. Schulman et al.  Proximal 

Policy Optimization Algorithms. 

arXiv:1707.06347 (2017). 
Spinning Up page

Spinning Up page

96

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html


PPO Clipped Objective

➢ Can use either combined or 

separate policy, value networks

➢ Combine loss terms in former case, 

separate in latter case

➢ Our PPO code does the latter

97



PPO: Pseudocode for Two Flavors

Spinning Up page

Spinning Up page

98

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html


• We used a slightly-modified version of the PPO 
objective, performing similar clipping on a policy 
gradient (rather than surrogate) objective:

• The result is a slightly more pessimistic method that 
consistently works better in continuous action 
spaces:

Clipped-Objective Policy Gradient

99

J. Markowitz,E.W. Staley.  Clipped-Objective 
Policy Gradients for Pessimistic Policy 
Optimization. arXiv:2311.05846v1. 2023.



Fundamental Challenges in Policy 
Optimization

• Fractal Landscapes

• Mollification

100



Policy Optimization in Continuous Action Spaces

Based on Policy Gradient:

• Use experience to approximate 

cumulative return

Many Challenges:
• Estimation variance
• Non-smoothness
• Fractal landscape
• Mollification
• …

101



Fractal Landscapes in Policy Optimization

• Goal:

• Approach:

• Challenge: Optimization landscapes are not always “nice”

.
Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, NeurIPS 23

102



• Goal: 

• Policy:

• Policy Gradient

Mollification of Policy Gradient

.
Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24

103



Nonparametric policy improvement in 
continuous action spaces
A. Castellano, S. Rezaei, J. Markovitz, and E. Mallada, Nonparametric Policy Improvement for Continuous Action 
Spaces via Expert Demonstrations, 2025, submitted to Reinforcement Learning Conference.

104

Agustin Castellano Sohrab Rezaei Jared Markowitz



Problem Setup

105

Goal: find optimal policy



Problem Setup

105

Goal: find optimal nonparametric policy

Data set:

Assumptions:

Optimal         is smooth:

Expert data: we have                                        , where

Deterministic dynamics: distance



1. How can we use these transitions to learn a nonparametric policy?

2. What guarantees can we get when we add more transitions?

3. Where should we add transitions to improve performance?

Expert data: we have                                        , where

106



Overview of our method

107



1. How can we use these transitions
to learn a nonparametric policy?

108



• Use the data to define lower bounds on optimal values:

• Nonparametric Policy:

• Remark: Note argmax always gives actions in dataset 

• Question: What can we say about              ?

Building bounds & Nonparametric Policy

Expert data: we have                                        , where

109



Nonparametric policy improves over lower bound

110

Policy Evaluation:

•  Nonparametric 𝜋 satisfies                :

Policy Improvement: 

• Given data sets 𝒟, 𝒟′ with 𝒟 ⊂ 𝒟′

• Strict on neighbors of new data:  ∀𝑠 ∈ 𝑁(𝑠′) 

More data = better lower bounds

Improvement on 
added points



111



2. What guarantees with more transitions?

3. Where to add transitions?

• Only where sufficient improvement is guaranteed:

112

1. How to learn a policy?

More data = better lower bounds

Improvement on 
added points



• We use the lqr_n_m environments from DeepMind’s Control Suite

Experiments
1st m actuated

Number of balls

lqr_2_1 lqr_6_2 

• Results on lqr_2_1:

113

D
at

as
et

 S
iz

e



• We use the lqr_n_m environments from DeepMind’s Control Suite

Experiments

• Results on lqr_2_1:

113

• Remarks:
• Incremental learning: No catastrophic forgetting, or oscillations
• Improvement across the entire state space (not in expectation)
• Only valuable data is added (harder to find at times passes)

D
at

as
et

 S
iz

e



Incremental Learning

after 100 episode… after 1000 episodes…

114

optimal controlafter 30K+

after 10 episode…



Incremental Learning

114

optimal controlafter 30K+



Thanks!

Enrique Mallada
mallada@jhu.edu

http://mallada.ece.jhu.edu

115


	Default Section
	Slide 1: Foundations of RL Lecture 9: Modern RL Algorithms
	Slide 2: Sources
	Slide 3: What is Reinforcement Learning?
	Slide 4: What is Deep Reinforcement Learning?
	Slide 5: Evolution of  DRL Mirrors Evolution of Computer Vision
	Slide 6: Anatomy of an RL Agent
	Slide 7
	Slide 8: Taxonomy of DRL Approaches
	Slide 9: Extensions
	Slide 11: Canonical Examples of DRL
	Slide 12: Deep Q Learning for Atari
	Slide 13: DQN Learning Breakout
	Slide 14: AlphaGo Zero, AlphaZero: Policy-Guided Monte Carlo Tree Search
	Slide 15: AlphaStar
	Slide 16: OpenAI: Solving a Rubik’s Cube with a Robotic Hand
	Slide 17: RL for Fine-Tuning Large Language Models
	Slide 18: RL for Fine-Tuning Large Language Models
	Slide 19: RL for Fine-Tuning Large Language Models
	Slide 20: Implementation Tips 1
	Slide 21: DRL Implementation
	Slide 22: What is required upfront?
	Slide 23: IDEs / Editors
	Slide 24: Required Software Components
	Slide 25: A few words about parallelization
	Slide 26: Open-Source Code
	Slide 27: Learning a Policy
	Slide 28: Learning a Policy
	Slide 29: Learning a Policy
	Slide 30: Learning a Policy
	Slide 31: Finite Horizon Case
	Slide 32: Infinite Horizon Case (Stationary Distribution)
	Slide 33: Structure of a DRL Algorithm
	Slide 34: Algorithms for Learning Policies
	Slide 35: General RL Learning Cycle
	Slide 36: Expectations and Recursion
	Slide 37: Definitions: Q and V
	Slide 38
	Slide 39: Types of RL Algorithms
	Slide 40
	Slide 41: Policy Gradient
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Model-Based DRL (via Backprop)
	Slide 46: Cost Considerations
	Slide 47: Matching Algorithms with Categories
	Slide 48: Why are there so many RL algorithms?
	Slide 49: On-Policy vs. Off-Policy
	Slide 50: Sample Efficiency By Method
	Slide 51: Considerations: Stability and Ease of Use
	Slide 52: Comparison: Assumptions to Consider
	Slide 53: Basic Policy Gradient
	Slide 54: The Goal of DRL
	Slide 55: Finite Horizon
	Slide 56: Evaluating the objective
	Slide 57: Direct Policy Differentiation
	Slide 58: Direct Policy Differentiation
	Slide 59: Evaluating the Policy Gradient via Sampling
	Slide 60: Evaluating the Policy Gradient via Sampling
	Slide 61: Partial Observability
	Slide 62: Relation to Maximum Likelihood
	Slide 63: Some Intuition
	Slide 64: Example: Gaussian policies
	Slide 65: Recap: Basic Policy Gradient
	Slide 66: Problems with policy gradient
	Slide 67: Problem: Variance
	Slide 68: Problem: Data Hungry
	Slide 69: Improving Policy Gradient
	Slide 70: Reducing Variance: Causality
	Slide 71: Reducing Variance: Baselines
	Slide 72: Analyzing the variance
	Slide 73: On-Policy Learning: Data Hungry
	Slide 74: Off-policy learning via importance sampling
	Slide 75: Off-policy policy gradient
	Slide 76: Recap: Improving the Policy Gradient
	Slide 77: Actor-Critic Algorithms
	Slide 78: Recap: Improving the Policy Gradient
	Slide 79: (Further) improving the policy gradient
	Slide 80: What about the baseline?
	Slide 81: Terminology Recap
	Slide 82: Fitting a value function
	Slide 83: Policy evaluation
	Slide 84: Monte Carlo evaluation with function approximation
	Slide 85: Bootstrapping
	Slide 86: Policy Gradient to Actor-Critic
	Slide 87: Discount Factor
	Slide 88: Discount Factors
	Slide 89: Discounts in the gradient
	Slide 90: Actor-critic algorithm Design
	Slide 91: Actor-critic algorithms (with discount)
	Slide 92: Parallelization
	Slide 93: Architecture Design
	Slide 94: Bias-variance tradeoff
	Slide 95: Critics as state-dependent baselines
	Slide 96: Eligibility traces, n-step returns
	Slide 97: Generalized Advantage Estimation
	Slide 98: Summary: Actor-Critic Learning
	Slide 99: Advanced Policy Gradient 
	Slide 100: Vanilla Policy Gradient
	Slide 101: Comparing Policies
	Slide 102: Comparing Policies
	Slide 103: Comparing Policies
	Slide 104: Trust Region Policy Optimization (TRPO)
	Slide 105: TRPO: Pseudocode
	Slide 106: Proximal Policy Optimization (PPO)
	Slide 107: PPO Clipped Objective
	Slide 108: PPO: Pseudocode for Two Flavors
	Slide 109: Clipped-Objective Policy Gradient
	Slide 110: Fundamental Challenges in Policy Optimization
	Slide 115: Policy Optimization in Continuous Action Spaces
	Slide 117: Fractal Landscapes in Policy Optimization
	Slide 118: Mollification of Policy Gradient
	Slide 119: Nonparametric policy improvement in continuous action spaces
	Slide 120: Problem Setup
	Slide 121: Problem Setup
	Slide 122
	Slide 123: Overview of our method
	Slide 124
	Slide 125: Building bounds & Nonparametric Policy
	Slide 126: Nonparametric policy improves over lower bound
	Slide 127
	Slide 128
	Slide 130: Experiments
	Slide 131: Experiments
	Slide 133: Incremental Learning
	Slide 134: Incremental Learning
	Slide 135


