
Lecture 8

Function Approximation and Policy Gradient Methods

Goals of this lecture

• Understand the motivation for value function approximation: generalization, scalability, and
handling large/continuous state spaces.

• Learn how to define and minimize the value prediction error under a given policy.

• Introduce the notion of on-policy state distribution µπ and how it shapes learning.

• Derive gradient descent and semi-gradient TD(0) updates for parametric approximators.

• Discuss convergence properties and tradeoffs in approximate value prediction.

8.1 Motivation for Function Approximation

In tabular reinforcement learning, we maintain a separate value estimate for each state (or state-
action pair). While this approach is feasible for small discrete environments, it quickly breaks down
as the state space grows. In high-dimensional or continuous environments, the number of states
becomes too large to store or update individually, and generalization across similar states becomes
essential.

To address this, we introduce function approximation, where we replace the tabular value func-
tion with a parameterized function:

v̂(s; θ) ≈ vπ(s),

where v̂ : S → R is a differentiable function (e.g., linear model, neural network), and θ ∈ Rd are
the parameters to be learned.

Function approximation enables:
• Scalability: Storage and computation depend on the number of parameters d, not the
number of states.

• Generalization: Updates to v̂(s; θ) at one state can influence value estimates at similar
states, improving learning efficiency.

• Smoothness and Structure: Prior knowledge (e.g., spatial locality, invariance) can be
encoded through features or architectures.

This approach forms the foundation of modern deep reinforcement learning and allows RL
agents to operate in large-scale and real-world domains.
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8.2 Value Function Approximation

Given a parameterized value function v̂θ(s), our goal is to approximate the true state-value function
vπ(s) as accurately as possible. We measure accuracy via the mean squared value error (MSVE)
under a suitable state distribution:

L(θ) := Es∼dπ

[
(v̂θ(s)− vπ(s))2

]
.

Stationary Distribution and Occupancy Measures. In reinforcement learning, we often
measure the accuracy of value function approximation using expectations over a state distribution.
Two commonly used distributions are the stationary distribution and the discounted occupancy
measure.

Stationary Distribution. The stationary distribution dπ(s) is defined as the limiting distribu-
tion over states when following a policy π in an ergodic Markov decision process.

lim
T→∞

1

T

T−1∑
t=0

P(St = s|π, S0 ∼ ρ)

It satisfies the fixed-point equation:

dπ(s′) =
∑
s∈S

dπ(s)
∑
a∈A

π(a | s)p(s′ | s, a),

and reflects the long-run fraction of time spent in each state under policy π. Importantly, dπ(s) is
independent of the initial state distribution, provided the Markov chain is ergodic.

Discounted Occupancy Measure. In earlier lectures, we introduced the discounted state oc-
cupancy measure:

ργπ(s) := (1− γ)
∞∑
t=0

γtP(St = s | π, S0 ∼ ρ),

where ρ is an arbitrary initial state distribution. This quantity reflects the normalized expected
number of discounted visits to state s when following policy π, starting from ρ.

Unlike the stationary distribution, the discounted occupancy measure does depend on the initial
distribution. It becomes increasingly concentrated around frequently visited states as γ increases.

Limit Connection. Although ργπ and dπ are generally different, they coincide in the limit as
γ → 1 only if the initial distribution matches the stationary distribution:

lim
γ→1

ργπ(s) = dπ(s), if and only if ρ = dπ.

Otherwise, the limiting discounted distribution reflects a bias induced by the initial condition.

Practical Implication. When designing learning algorithms or analyzing performance, it is
important to distinguish which distribution is used to define objectives. The stationary distribution
dπ is natural when considering long-run average performance, while ργπ more accurately captures
finite-horizon or discounted behavior starting from a given state distribution.
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Trade-off and Approximation Accuracy. Function approximation inherently involves a trade-
off. It is generally impossible to achieve perfect accuracy for every state, especially when state spaces
are large or continuous. Therefore, the objective becomes minimizing error weighted by visitation
frequencies of states under the policy π, thus prioritizing states that are frequently encountered.

Bootstrapped TD Targets. Since vπ(s) is unknown, we use bootstrapped estimates from sam-
pled experience. Given a sampled transition (St, Rt+1, St+1), the one-step Temporal-Difference
(TD) target is:

Targett = Rt+1 + γv̂θ(St+1).

The stochastic approximation of MSVE then becomes:

Lt(θ) =
1

2
(v̂θ(St)− [Rt+1 + γv̂θ(St+1)])

2 .

Stochastic Semi-gradient TD Update. Although this is not the exact gradient, the commonly
used semi-gradient update rule is:

θt+1 = θt + αtδt∇θv̂θ(St),

where the TD error δt is:
δt = Rt+1 + γv̂θ(St+1)− v̂θ(St).

This update provides an efficient, incremental way to minimize the MSVE objective.

Linear TD(0) for Policy Evaluation A common practical choice is linear value function ap-
proximation:

v̂θ(s) = ϕ(s)⊤θ,

with fixed feature vector ϕ(s) ∈ Rd and parameter vector θ ∈ Rd.
The corresponding TD(0) update rule is:

θt+1 = θt + αtδtϕ(St),

where the TD error becomes:

δt = Rt+1 + γϕ(St+1)
⊤θt − ϕ(St)

⊤θt.

This update directly minimizes a projected Bellman error, ensuring convergence under standard
assumptions. Rigorous analysis is provided by [1], employing stochastic approximation techniques
and linear dynamical system theory.

Summary of Key Points:
• MSVE focuses approximation effort on states frequently visited under π.

• Discounted occupancy measures bridge initial distributions to stationary distributions.

• Bootstrapping via TD targets provides incremental and efficient updates.

• Linear approximation offers analytical tractability and guaranteed convergence.
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8.3 From Value-Based to Policy-Based Methods

So far, we have considered value-based methods that estimate the value function vπ or qπ and
indirectly improve the policy via greedy or ε-greedy updates. These methods rely heavily on
estimating action values and can suffer from:

• High variance in long-horizon tasks when using Monte Carlo targets.

• Instability in function approximation due to moving targets and partial updates.

• Difficulty in representing or optimizing stochastic policies.

• Delayed or indirect credit assignment across time steps.

Direct Policy Optimization.

We now turn to policy-based methods that parameterize the policy πθ(a | s) directly and optimize
it to maximize long-term reward:

J(θ) := Eπθ

[ ∞∑
t=0

Rt

]
.

This approach bypasses the need to explicitly estimate qπ and allows natural handling of continuous
or stochastic policies.

Gradient Ascent. We seek to adjust θ via gradient ascent:

θt+1 = θt + α ∇̂θJ(θ),

where ∇̂θJ(θ) is a stochastic estimate of the policy gradient, computed from trajectories sampled
from πθ.

Advantages of Policy-Based Methods.
• Can naturally represent stochastic policies, which may be optimal in certain environments.

• Allow smooth optimization via gradient methods.

• Avoid maximization steps required by Q-learning or SARSA.

Policy Parameterization

To apply gradient-based optimization to policies, we define a differentiable, parameterized family
of policies πθ(a | s).

Discrete Action Spaces. A standard choice is the softmax policy :

πθ(a | s) =
exp(h(s, a; θ))∑
b exp(h(s, b; θ))

,

where h(s, a; θ) is the preference function, expressing how favorable action a is in state s under
parameters θ. A common choice is:

h(s, a; θ) = θ⊤x(s, a),

where x(s, a) ∈ Rd is a feature vector encoding the state-action pair.
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Continuous Action Spaces. For continuous actions, a common parameterization is a Gaussian
policy:

πθ(a | s) = N (a | µθ(s), σ
2),

where the mean µθ(s) is a function of the state and learned parameters θ, e.g., µθ(s) = θ⊤ϕ(s).
The variance σ2 may be fixed or learned jointly.

Advantages.
• Softmax policies induce stochasticity that helps with exploration and robustness.

• Gaussian policies enable smooth action selection in continuous spaces.

• Both forms are differentiable, allowing for efficient gradient-based updates.

8.4 Policy Gradient Theorem and REINFORCE

Policy Gradient Theorem

To compute the gradient ∇θJ(θ), we use the following result:

Theorem 8.1 (Policy Gradient Theorem). Let πθ( · | s) be a differentiable stochastic policy with
parameter vector θ ∈ Rd, and let the performance objective be

J(θ) := Eπθ

[∑∞
t=0 γ

t r(St, At)
]
, 0 ≤ γ < 1.

Then
∇θJ(θ) =

∑
s∈S

dπ(s)
∑
a∈A

qπ(s, a)∇θπθ(a | s),

where dπ(s) = limt→∞ P
(
St = s

∣∣ S0 ∼ ρ, π
)
is the stationary distribution under πθ (assumed to

exist and be unique) and qπ(s, a) = Eπθ
[
∑∞

k=0 γ
k r(St+k, At+k) | St = s,At = a] is the action–value

function.

Log-Derivative Trick. Since the gradient of a probability is tricky to work with, we reparametrize:

∇θπθ(a | s) = πθ(a | s)∇θ log πθ(a | s),

and rewrite the gradient as:

∇θJ(θ) = Eπθ
[qπ(s, a)∇θ log πθ(a | s)] .

Proof. Step 1: Gradient of vπ. For every state s, vπ(s) =
∑

a πθ(a | s)qπ(s, a), so by the product
rule

∇θv
π(s) =

∑
a

[
∇θπθ(a | s)

]
qπ(s, a) +

∑
a

πθ(a | s)∇θq
π(s, a). (8.1)

Step 2: Recursive expansion of ∇θq
π. Using the one-step Bellman equation qπ(s, a) =∑

s′,r p(s
′, r | s, a)[ r + γvπ(s′)] and differentiating,

∇θq
π(s, a) = γ

∑
s′

p(s′ | s, a)∇θv
π(s′).
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Step 3: Substitute into (8.1). Plugging the above into (8.1) gives

∇θv
π(s) =

∑
a

∇θπθ(a | s) qπ(s, a) + γ
∑
a

πθ(a | s)
∑
s′

p(s′ | s, a)∇θv
π(s′).

Define the transition matrix under πθ as Pπ(s, s
′) :=

∑
a πθ(a | s)p(s′ | s, a). In vector form:

∇θv
π = Φ︸︷︷︸

size |S|×d

+γPπ∇θv
π, where Φ(s) :=

∑
a

∇θπθ(a | s) qπ(s, a).

Solve the linear system: ∇θv
π = (I − γPπ)

−1Φ.
Step 4: Gradient of J(θ). Because J(θ) =

∑
s d

π(s)vπ(s) (with dπ the stationary distribution),

∇θJ(θ) =
∑
s

dπ(s)∇θv
π(s) =

∑
s

[
dπ⊤(I − γPπ)

−1
]
s
Φ(s).

For γ < 1 and ergodic πθ, d
π⊤(I−γPπ)

−1 = (1−γ)
∑∞

t=0 γ
tdπ⊤P t

π = dπ(·)⊤, the discounted–occupancy
vector, which equals dπ. Hence

∇θJ(θ) =
∑
s

dπ(s)
∑
a

∇θπθ(a | s) qπ(s, a),

which is exactly the claimed result.

REINFORCE: Monte Carlo Policy Gradient

REINFORCE is a Monte Carlo algorithm that applies the policy gradient theorem using full returns:

Gt :=
T∑

k=t

γk−tRk.

It replaces qπ(s, a) with a sampled return Gt, yielding the update:

θ ← θ + α∇θ log πθ(at | st)Gt.

Interpretation. REINFORCE performs stochastic gradient ascent on J(θ) using unbiased esti-
mates of the gradient. However, it suffers from high variance due to long returns Gt, motivating
the use of variance reduction techniques, such as baselines, which we will discuss next.

8.5 Variance Reduction via Baselines

The policy gradient estimator used in REINFORCE is unbiased, but often exhibits high variance
due to the use of complete returns Gt. A powerful variance reduction technique is to subtract a
baseline b(st) from the return without introducing bias:

∇θJ(θ) = Eπθ

[∑
t

∇θ log πθ(at | st) (Gt − b(st))

]
.
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REINFORCE: Monte-Carlo Policy-Gradient Control (episodic)

Input: differentiable policy parameterization πθ(a | s)
Parameter: step size α > 0
Initialize: policy parameters θ ∈ Rd (e.g. θ = 0)

Loop forever (for each episode)

1. Generate an episode {S0, A0, R1, . . . , ST , AT , RT+1} following πθ.

2. For each step t = 0, 1, . . . , T do

(a) Compute the return (Gt)

Gt =
T∑

k=t

γk−tRk+1.

(b) Update the policy parameters (semi-gradient step)

θ ← θ + αγ tGt∇θlnπθ(At | St).

Figure 8.1: The REINFORCE algorithm uses complete returns to form an unbiased policy-gradient
estimate and updates parameters after every episode.

Choice of Baseline and Variance Reduction. In REINFORCE and other Monte Carlo policy
gradient methods, we estimate the gradient of the performance objective by sampling full returns.
One key insight is that we can reduce the variance of this estimator—without introducing bias—by
subtracting a baseline from the return:

∇θJ(θ) = Eπθ

[ ∞∑
t=0

∇θ log πθ(At | St) (Gt − b(St))

]
,

for any function b : S → R.
This identity holds because the expected value of the baseline term vanishes:

Eπθ
[∇θ log πθ(At | St)b(St)] = Eπθ

b(St) · Eπθ
[∇θ log πθ(At | St) | St]︸ ︷︷ ︸

=0

 = 0.

Optimal Baseline. The variance of the policy gradient estimator is minimized when the baseline
is chosen as the expected return conditioned on the current state:

b⋆(s) = Eπθ
[Gt | St = s] = vπθ(s).

That is, the state-value function is the variance-optimal baseline..

Actor–Critic Architecture. In practice, vπθ(s) is not known and must be estimated. This
leads to the actor–critic framework:

• The critic learns an estimate v̂ω(s) ≈ vπθ(s) using value function approximation (e.g., TD
learning),

• The actor uses this estimate to compute the advantage

At := Gt − v̂ω(St),

and updates θ using:
θ ← θ + α∇θ log πθ(At | St)At.
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This reduces the variance of the gradient estimator without changing its expected value, improving
the stability and sample efficiency of learning.

8.6 Summary and Discussion

• Function approximation enables reinforcement learning in large or continuous spaces,
trading off expressiveness and approximation error.

• TD methods remain effective and stable under linear approximations, and are widely used
in practice (e.g., TD(0), SARSA).

• Policy gradients allow direct optimization of stochastic policies, offering flexibility and
robustness, especially in high-dimensional or continuous action spaces.

• REINFORCE provides a conceptually simple algorithm for Monte Carlo policy gradient
estimation, but suffers from high variance.

• Baselines reduce variance in policy gradient methods without introducing bias; actor-critic
methods leverage this by learning the baseline from data.

These ideas form the foundation of modern reinforcement learning algorithms, particularly in
settings involving neural networks, continuous control, and stochastic environments.
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