
Lecture 7

Temporal Difference Learning and Stochastic Approxi-

mation

Goals of this Lecture

• Understand the motivation and formulation of Temporal-Difference (TD) methods.

• Learn the TD(0) algorithm for policy evaluation and compare it with Monte Carlo.

• Introduce stochastic approximation and the role of contraction mappings in convergence.

• Generalize TD(0) to n-step and TD(λ) using eligibility traces.

• Learn TD-based control algorithms: SARSA (on-policy) and Q-learning (off-policy).

• Analyze empirical performance and practical challenges in using TD methods.

7.1 From Monte Carlo to Temporal-Difference

Motivation. Monte Carlo (MC) methods estimate value functions by averaging complete returns
from sampled episodes:

v̂π(s) =
1

N(s)

N(s)∑
i=1

G
(i)
t .

These methods are model-free and easy to implement, but have two major limitations:
• They require episodes to terminate before updating any estimates, making them suitable only
for episodic tasks.

• Since they use full returns Gt, they often suffer from high variance.
While it is possible to compute the empirical average incrementally without storing all re-

turns—e.g., using:
v̂π(s)← v̂π(s) + α (Gt − v̂π(s)) ,

this update still depends on the full return Gt, which can only be calculated after an episode ends.
Thus, despite being memory-efficient, Monte Carlo methods remain delayed in practice.

1



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION2

Idea of TD. Temporal-Difference (TD) methods address these issues by bootstrapping : they
update estimates based on other learned estimates, combining ideas from both Monte Carlo and
Dynamic Programming:

• Like MC: TD methods learn directly from raw experience (samples), without requiring a
model of the environment.

• Like DP: TD methods update value estimates using other current estimates, rather than
waiting for full returns.

This enables online, incremental updates that are more efficient and broadly applicable. TD
methods can operate in continuing tasks and make updates at every time step—without needing
to wait for episodes to finish. Moreover, by bootstrapping, they tend to reduce variance compared
to Monte Carlo estimation.

7.2 TD(0) for Policy Evaluation

Definition. The simplest TD method is TD(0), which updates the estimate of V (St) using the
one-step return:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] .

This is a stochastic approximation of the Bellman equation:

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] .

Figure 7.1: TD(0) algorithm: tabular policy evaluation with step size α.

Comparison with Monte Carlo. Monte Carlo and TD(0) both aim to estimate vπ from expe-
rience, but differ in their update targets and behavior:

• Monte Carlo (MC) uses complete returns Gt = Rt+1 + γRt+2 + . . . and updates only after
episode termination. This provides unbiased estimates but with high variance.

• TD(0) uses the one-step target Rt+1 + γV (St+1), enabling online and incremental updates.
The estimates are biased (due to bootstrapping) but generally exhibit lower variance.

TD(0) typically learns faster than MC, especially in long or infinite-horizon tasks, due to earlier
and more frequent updates. The following figure illustrates this difference empirically:



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION3

Figure 7.2: Comparison of Monte Carlo and TD(0) learning. TD(0) converges faster by bootstrap-
ping.

General Update View. TD methods can be expressed in the general form of stochastic approx-
imation:

v̂t+1(St) = v̂t(St) + αt [Ut − v̂t(St)] ,

where Ut is a target that serves as an estimate of the expected return. The goal is that E[Ut | St =
s] ≈ vπ(s). In the case of TD(0), the one-step bootstrapped target is used:

Ut := Rt+1 + γv̂t(St+1).

While this introduces bias—since Ut depends on the current approximation v̂t—it enables faster
and fully online updates at each step, in contrast to the episodic nature of Monte Carlo methods.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION4

7.2.1 Convergence of TD via the ODE Method

From TD(0) to General Stochastic Approximation. In the previous section, we introduced
TD(0) as a stochastic approximation method that uses the update:

vt+1(St) = vt(St) + αt (Rt+1 + γvt(St+1)− vt(St)) .

This update can be expressed in a more general stochastic approximation form as:

xt+1 = xt + αt (F (xt) + εt) ,

where, for TD(0), we set xt = vt and F (v) = Tπv − v, and the noise εt is given by:

εt = [Rt+1 + γvt(St+1)]− (Tπvt)(St),

with E[εt | Ft] = 0.
To analyze convergence rigorously, we introduce a general stochastic approximation convergence

theorem that leverages the ODE method.

Theorem 7.1 (Stochastic Approximation via ODE Stability). Consider the stochastic recursion
in Rn:

xt+1 = xt + αt (F (xt) + εt) ,

where the following conditions hold:
1. The function F : Rn → Rn is Lipschitz continuous.

2. The step sizes satisfy the Robbins–Monro conditions:

∞∑
t=0

αt =∞, and
∞∑
t=0

α2
t <∞.

3. The noise εt is a martingale difference sequence w.r.t. Ft = σ(x0, . . . , xt, ε0, . . . , εt−1) satis-
fying:

E[εt | Ft] = 0, sup
t

E[∥εt∥2] <∞.

4. The ODE associated with the recursion:

ẋ(t) = F (x(t)),

has a globally asymptotically stable equilibrium x∗.
Then, the sequence (xt) converges almost surely to x∗:

xt
a.s.−−→ x∗, as t→∞.

One-Sided Lipschitz Condition. A sufficient condition ensuring global asymptotic stability of
the ODE ẋ(t) = F (x(t)) is that F satisfies a one-sided Lipschitz condition with constant λ > 0:

⟨F (x)− F (y), x− y⟩ ≤ −λ∥x− y∥2, ∀x, y ∈ Rn.

This condition implies exponential convergence of solutions of the ODE to the equilibrium x∗.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION5

Corollary 7.1 (Convergence of TD(0)). Consider the TD(0) update for a fixed policy π, where:

vt+1(s) = vt(s) + αt (Rt+1 + γvt(St+1)− vt(s)) ,

and the step sizes αt satisfy Robbins–Monro conditions. If the Markov chain induced by π visits all
states infinitely often, then:

vt
a.s.−−→ vπ, as t→∞,

where vπ is the unique fixed point of the Bellman operator Tπ.

Proof. Observe that F (v) = Tπv − v. The Bellman operator Tπ is a γ-contraction under the max
norm, which implies the one-sided Lipschitz condition:

⟨(Tπv − v)− (Tπw − w), v − w⟩ ≤ −(1− γ)∥v − w∥2,

with λ = 1− γ > 0. Therefore, the associated ODE:

v̇(t) = Tπv(t)− v(t)

has a globally asymptotically stable equilibrium vπ. Theorem 7.1 then implies that vt → vπ almost
surely.

Relevant Literature. These results derive from classical stochastic approximation literature,
notably works by Robbins and Monro (1951), Kushner and Yin (2003), and Borkar (2008). The
ODE method provides an intuitive and rigorous framework connecting stability properties of de-
terministic differential equations with stochastic iterative methods, widely used in reinforcement
learning algorithms such as TD(0), SARSA, and Q-learning.

7.3 Multi-Step TD and TD(λ)

Motivation. TD(0) uses only the immediate reward and the value of the next state to update
the estimate of the current state. Monte Carlo (MC) methods, on the other hand, wait until the
end of the episode and use the full return. Both approaches have advantages and drawbacks:

• TD(0) is low variance and updates incrementally, but is more biased.

• MC is unbiased but has high variance and applies only to episodic tasks.
This motivates a family of multi-step TD methods that interpolate between TD(0) and MC by

using returns spanning multiple steps.

The n-Step TD Update. Given a trajectory (St, Rt+1, St+1, . . . , St+n), the n-step return is
defined as:

G
(n)
t :=

n−1∑
k=0

γkRt+k+1 + γnV (St+n).

The n-step TD algorithm then performs the update:

V (St)← V (St) + α
[
G

(n)
t − V (St)

]
.

• When n = 1, this recovers TD(0).

• When n→∞, G
(n)
t → Gt, the Monte Carlo return.

This formulation allows a continuous tradeoff between bias and variance:
• Smaller n reduces variance due to bootstrapping, but increases bias.

• Larger n reduces bias but increases variance, particularly in stochastic environments.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION6

Discussion of Figure 7.3. The figure below compares the performance of n-step TD methods
as a function of the learning rate α, across various values of n, on a 19-state random walk task. We
observe:

• TD(0) (n = 1) is robust to larger step sizes, but converges to higher error.

• Monte Carlo-like updates (large n) perform poorly unless α is very small.

• Intermediate values like n = 4 or n = 8 strike the best balance between speed and accuracy.
This empirical result highlights the importance of tuning n to balance stability and learning effi-
ciency.

Figure 7.3: Empirical performance of n-step TD methods as a function of α, for various values of
n, on a 19-state random walk task.

TD(λ) and Eligibility Traces. TD(λ) combines all n-step returns using an exponentially
weighted average with decay factor λ ∈ [0, 1]:

Gλ
t := (1− λ)

∞∑
n=1

λn−1G
(n)
t .

This defines the forward view of TD(λ), but it is not implementable online since it requires future
rewards.

Offline λ-Return Implementation. In the offline version of TD(λ), we compute the λ-return
Gλ

t for each state visited during an episode after the episode completes, and use it to perform a
one-time update:

V (St)← V (St) + α
[
Gλ

t − V (St)
]
.

This method closely matches the forward view of TD(λ) but delays all updates until the episode
ends. While accurate, it is less suitable for online learning or real-time applications. This motivates
the use of the backward view, which provides an efficient and incremental approximation of the same
objective.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION7

Eligibility Traces (Backward View). We maintain an auxiliary variable et(s) called the eli-
gibility trace for each state s:

et(s) =

{
γλet−1(s) + 1, if s = St,

γλet−1(s), otherwise.

Then the value function is updated using:

V (s)← V (s) + α · δt · et(s),

where the TD error is:
δt = Rt+1 + γV (St+1)− V (St).

This update assigns credit to all previously visited states, decaying geometrically according to how
long ago they were visited.

Special Cases.
• λ = 0: Recovers TD(0), only the current state is updated.

• λ→ 1: Approaches Monte Carlo learning with full episode returns.

Interpretation. TD(λ) unifies temporal-difference and Monte Carlo learning into a single frame-
work that can interpolate between them. It achieves both faster convergence than MC and more
stability than TD(0), especially in long or partially observable tasks.

Discussion of Figure 7.4. The figure compares the performance of TD(λ), which implements
the backward view with eligibility traces, to the offline λ-return algorithm, which corresponds to the
forward view. Both approaches aim to combine multi-step returns to improve learning efficiency,
interpolating between TD(0) and Monte Carlo.

The plot shows root mean squared error (RMSE) after 10 episodes on a 19-state random walk
task, for varying values of λ and step-size α. We observe that:

• For small α, the performance of both methods is nearly identical.

• For large α, TD(λ) becomes more sensitive, especially at high λ values, potentially due to
trace accumulation errors.

• Intermediate λ values (e.g., λ = 0.8) tend to yield the lowest RMSE across a wide range of α
values.

This illustrates that TD(λ) can closely approximate the forward view in practice while being more
efficient and fully online, making it well suited for large-scale or continual learning problems.

7.4 TD Control: SARSA and Q-Learning

SARSA (On-Policy TD Control). SARSA is an on-policy TD control method that updates
action-value estimates using the actual action taken by the agent. The update rule is:

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] .

The name ”SARSA” comes from the quintuple (St, At, Rt+1, St+1, At+1) used in the update. SARSA
improves the policy by continually acting ε-greedily with respect to Q and updating using the same
ε-greedy behavior. Thus, it converges to a policy that balances exploration and exploitation.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION8

Figure 7.4: Comparison of TD(λ) and offline λ-return algorithm. The backward view (online TD
with traces) efficiently approximates the forward view using only incremental updates.

Figure 7.5: SARSA algorithm: incremental on-policy TD control using observed actions and tran-
sitions.

Q-learning (Off-Policy TD Control). Q-learning is an off-policy TD control algorithm. It
learns the optimal action-value function q∗, regardless of the behavior policy used to generate data,
by using the greedy action in its update:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
.

Unlike SARSA, which updates based on the next action actually taken, Q-learning uses the max-
imum over all possible next actions. This decouples learning from behavior, enabling convergence
to the optimal policy even when following an exploratory behavior.

Empirical Comparisons and Takeaways

Example: Cliff Walking. In this domain, the agent must navigate near a ”cliff” region that
incurs a high negative reward when entered. SARSA, being on-policy, learns a conservative strategy
that avoids risky paths during exploration. Q-learning, being off-policy and greedy in its update,
may learn a shorter but riskier path.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION9

Figure 7.6: SARSA applied to the Windy Gridworld. Despite exploration, it learns a path that
avoids risky states.

Figure 7.7: Q-Learning algorithm: off-policy control using greedy next-action updates.

Summary.
• SARSA: On-policy, safer, but converges to a policy that reflects exploratory behavior.

• Q-learning: Off-policy, learns optimal greedy policy, but may be riskier during training.

• The choice between them depends on whether safety during learning or optimality at conver-
gence is more important.



LECTURE 7. TEMPORAL DIFFERENCE LEARNING AND STOCHASTIC APPROXIMATION10

Figure 7.8: Comparison of SARSA and Q-Learning on the Cliff Walking task. SARSA prefers safer
trajectories, while Q-learning may risk falling off the cliff during training.


	Temporal Difference Learning and Stochastic Approximation
	From Monte Carlo to Temporal-Difference
	TD(0) for Policy Evaluation
	Convergence of TD via the ODE Method

	Multi-Step TD and TD()
	TD Control: SARSA and Q-Learning


