
Lecture 6

Bandits, Monte Carlo Prediction, and Control

Goals of this Lecture

1. Define regret and evaluate exploration strategies including ε-greedy, UCB, and Thompson
Sampling.

2. Learn how to estimate value functions via Monte Carlo methods using sampled trajectories:
first-visit and every-visit estimators, and their incremental updates.

3. Develop model-free policy improvement techniques using Monte Carlo control and GLIE
strategies: Exploring Starts, ε-soft policies.

6.1 Recap: Multi-Armed Bandits

Setup. In the multi-armed bandit problem, the agent repeatedly chooses from a finite set of
actions (arms) A = {1, . . . ,K}, receiving a stochastic reward each time. The reward distribution
for each arm is unknown.

Goal. The agent aims to maximize cumulative reward over time, which requires balancing:
• Exploration: trying different arms to learn their rewards,

• Exploitation: choosing arms believed to be optimal.

Performance Metric. Let q(a) be the expected reward of arm a, and v∗ = maxa q(a). The
cumulative regret after T rounds is:

Regret(T ) := Tv∗ − E

[
T∑
t=1

q(At)

]
,

which quantifies how much reward was lost compared to always playing the best arm.

Key Insight. Regret arises from pulling suboptimal arms. The agent must learn to identify the
best arms quickly, minimizing regret by allocating actions wisely over time.
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6.2 Exploration Strategies

We now describe four foundational strategies for managing the exploration–exploitation tradeoff
in multi-armed bandit problems: Explore-then-Exploit, ε-greedy, Upper Confidence Bound (UCB),
and Thompson Sampling.

Empirical Action-Value Estimates. All of the methods we discuss rely on estimates of the
expected reward for each arm a ∈ A. We denote by q̂a(t) the empirical average reward observed
from arm a up to time t:

q̂a(t) :=
1

Na(t)

t−1∑
k=1

1{Ak = a} ·Rk,

where Na(t) is the number of times arm a has been selected in the first t− 1 rounds. If Na(t) = 0,
we define q̂a(t) := 0 or initialize it arbitrarily to ensure proper exploration.

Explore-then-Exploit. One of the simplest strategies is to divide learning into two phases:
• Exploration phase: For the first T0 rounds, sample each arm a fixed number of times (e.g.,
uniformly at random),

• Exploitation phase: For the remaining rounds, repeatedly select the arm with the highest
estimated reward:

At = argmax
a∈A

q̂a(T0).

This approach guarantees that all arms are explored initially, after which the best one is exploited.
While easy to implement, it can perform poorly if T0 is not chosen carefully—too little exploration
risks missing the best arm, while too much incurs unnecessary regret.

The following strategies address this shortcoming by interleaving exploration and exploitation
throughout learning.

ε-Greedy. The ε-greedy strategy balances exploration and exploitation using a simple random-
ized rule. At each round t, the agent selects:

• With probability 1− ε: the arm with the highest empirical estimate:

At = argmax
a∈A

q̂a(t),

• With probability ε: an arm chosen uniformly at random from A.
The exploration parameter ε ∈ (0, 1) determines how frequently the agent explores. A small ε leads
to more exploitation, while a larger value promotes exploration. To improve long-term performance,
it is common to decay ε over time, for example using εt = 1/

√
t, to explore more in early rounds

and exploit later.

Upper Confidence Bound (UCB). UCB is a frequentist algorithm based on the principle of
optimism in the face of uncertainty. It augments the empirical estimate q̂a(t) with a confidence
bonus that decreases with Na(t), the number of times arm a has been selected:

At = argmax
a∈A

[
q̂a(t) + c ·

√
log t

Na(t)

]
,
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where c > 0 is a tunable parameter controlling the degree of optimism. The log t/Na(t) term
encourages early exploration of all arms and gradually shifts toward exploitation as uncertainty
decreases.

Thompson Sampling. Thompson Sampling is a Bayesian exploration strategy that maintains
a posterior distribution over each arm’s expected reward. At each round t, the agent proceeds as
follows:

1. For each arm a ∈ A, sample θa(t) from the posterior distribution over q(a),

2. Select the arm with the highest sampled value:

At = argmax
a∈A

θa(t).

The sampled value θa(t) represents a plausible estimate of the expected reward q(a), drawn from
the agent’s current belief. This randomization induces structured exploration: arms with greater
uncertainty (i.e., wider posterior distributions) are more likely to be selected, even if their current
empirical mean is lower.

Example: Bernoulli Bandits. In the Bernoulli bandit setting, each arm yields binary rewards
Rt ∈ {0, 1}, with unknown mean q(a) = E[Rt | At = a]. The agent models its uncertainty about
each arm’s mean reward q(a) using a Bayesian approach. Specifically, the agent treats q(a) as a
random variable with a prior distribution:

q(a) ∼ Beta(αa, βa),

where αa > 0 and βa > 0 are parameters that encode the agent’s belief about how likely the arm
is to yield rewards of 1 or 0, respectively.

• The Beta distribution is a natural prior for Bernoulli outcomes because it is the conjugate
prior—the posterior remains a Beta distribution after observing data.

• Initially, we use the uniform prior Beta(1, 1), which represents no prior preference for 0 or 1
outcomes.

• Each time arm a is pulled and a reward Rt ∈ {0, 1} is observed, the agent updates the
posterior parameters:

αa ← αa +Rt, βa ← βa + (1−Rt).

That is:

– If Rt = 1, we increment αa, reinforcing the belief that arm a tends to yield reward 1,

– If Rt = 0, we increment βa, reinforcing the belief that arm a tends to yield reward 0.

• After the update, the posterior over q(a) becomes Beta(αa, βa). To choose the next action,
we:

1. Sample a mean reward estimate:

θa(t) ∼ Beta(αa, βa),

2. Select the arm with the highest sample:

At = argmax
a∈A

θa(t).
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Interpretation. This strategy is Bayesian because it explicitly models and updates the agent’s
uncertainty about each arm’s mean reward via a posterior distribution. The parameters αa and βa
track the number of observed rewards and failures, respectively. Early in training, the posteriors
are wide (uncertain), promoting exploration. Over time, the posterior concentrates around the
empirical mean, leading to exploitation. Sampling from the posterior thus naturally balances
exploration and exploitation without requiring explicit tuning of exploration parameters.

6.3 Regret Bounds and Performance Guarantees

We now examine the performance of different exploration strategies in terms of cumulative regret.
Recall:

Regret(T ) := T · q∗ −
T∑
t=1

E[q(At)],

where q∗ = maxa q(a) is the mean reward of the best arm.

6.3.1 Regret of Explore-then-Exploit.

Assume we explore uniformly for T0 rounds, selecting each arm approximately T0/K times. Let q̂a
be the empirical mean reward of arm a after this phase, and let â = argmaxa q̂a be the empirically
best arm. In the remaining T − T0 rounds, the agent exploits arm â.

If T0 is large enough to accurately estimate the means (e.g., T0 = Θ(K log T )), the probability
of selecting a suboptimal arm during exploitation is small. The regret decomposes as:

Regret(T ) ≤ T0 ·∆max + (T − T0) · P[â ̸= a∗] ·∆max,

where a∗ is the true optimal arm and ∆max := maxa(µ
∗ − µa). Using concentration bounds, it can

be shown that with T0 = O
(
K
∆2 log T

)
, the total regret is:

Regret(T ) = O

(
K

∆
log T

)
,

where ∆ = mina̸=a∗ ∆a is the smallest suboptimality gap. While this matches the asymptotic
rate of UCB and Thompson Sampling in the gap-dependent case (assuming knowledge of ∆), the
constants are worse and the method lacks adaptivity.

Theorem 6.1 (Regret of Explore-then-Exploit). Let A = {1, . . . ,K} be a finite set of arms, and
assume rewards are bounded in [0, 1]. Let q(a) := E[Rt | At = a] denote the expected reward of arm
a, and define the optimal value q∗ := maxa q(a). Let the suboptimality gap be ∆a := q∗ − q(a), and
define ∆ := mina̸=a∗ ∆a, where a∗ := argmaxa q(a) is the optimal arm.

Suppose the agent explores uniformly for T0 rounds, sampling each arm approximately T0/K
times, and then exploits the empirically best arm â := argmaxa q̂a for the remaining T −T0 rounds.
Then, for

T0 =

⌈
2K

∆2
log T

⌉
,

the expected regret satisfies:

Regret(T ) = O

(
K

∆
log T

)
.
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Proof. We decompose the regret as:

Regret(T ) = T0 ·∆max︸ ︷︷ ︸
exploration

+(T − T0) · P[â ̸= a∗] ·∆max︸ ︷︷ ︸
exploitation

,

where ∆max := maxa̸=a∗ ∆a.
Let n := T0/K denote the number of samples per arm during exploration. Using Hoeffding’s

inequality, we have for each arm a,

P[ |q̂a − q(a)| > ϵ ] ≤ 2 exp(−2nϵ2).

To misidentify the best arm, there must exist an arm a ̸= a∗ such that:

q̂a > q̂a∗ ⇒ (q̂a − q(a)) + (q(a∗)− q̂a∗) > ∆a

Further by noting that the last condition requires,

(q̂a − q(a)) >
∆a

2
or (q(a∗)− q̂a∗) >

∆a

2

we can bound P[â ̸= a∗] using the union bound:

P[â ̸= a∗] ≤
∑
a̸=a∗

[
P
(
q̂a > q(a) +

∆a

2

)
+ P

(
q̂a∗ < q(a∗)− ∆a

2

)]
.

Each term is bounded by Hoeffding’s inequality:

P[â ̸= a∗] ≤ 2(K − 1) exp

(
−n∆2

2

)
.

Choosing n = 2
∆2 log T (so T0 =

2K
∆2 log T ), we get:

P[â ̸= a∗] ≤ 2(K − 1)

T
.

Substituting back into the regret expression:

Regret(T ) ≤ T0 ·∆max + T · 2(K − 1)

T
·∆max = O

(
K

∆2
log T ·∆max

)
.

Since ∆max ≤ 1, and assuming ∆max = O(∆), we obtain:

Regret(T ) = O

(
K

∆
log T

)
.

6.3.2 Regret of ε-Greedy.

With a fixed ε > 0, exploration occurs at a constant rate, leading to linear regret:

Regret(T ) = O(εT + log T ).

To achieve sublinear regret, ε must decay over time. For example, εt = Θ(1/
√
t) yields regret

O(
√
T log T ), though this requires careful tuning.
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Theorem 6.2 (Regret of ε-Greedy). Consider the multi-armed bandit problem with K arms, each
having a fixed mean reward q(a), and let a∗ := argmaxa q(a) denote the optimal arm. Suppose the
agent follows the ε-greedy strategy with:

• either a fixed exploration parameter ε ∈ (0, 1),

• or a time-dependent schedule εt = c/
√
t for some c > 0.

Then:
1. With fixed ε, the expected cumulative regret after T rounds satisfies:

Regret(T ) = O(εT + log T ).

2. With decaying εt = Θ(1/
√
t), the expected cumulative regret satisfies:

Regret(T ) = O
(√

T log T
)
.

Proof. We decompose the expected regret into two parts: regret due to exploration, and regret due
to incorrect exploitation.

(1) Exploration Regret. At each round t, with probability ε, the agent selects an arm
uniformly at random. Each arm is selected with probability ε/K, including suboptimal ones. So,
for each suboptimal arm a ̸= a∗, the expected number of times it is pulled due to exploration is:

E[N explore
a (T )] =

ε

K
T.

Hence, the total exploration regret is:∑
a̸=a∗

∆a · E[N explore
a (T )] ≤ εT ·∆max.

(2) Exploitation Regret. With probability 1− ε, the agent selects the arm with the highest

empirical mean. Let N exploit
a (T ) denote the number of times suboptimal arm a is chosen during

exploitation. For arm a ̸= a∗, we bound this using Hoeffding’s inequality.
Let q̂a(t) be the empirical mean of arm a after n pulls. By Hoeffding’s inequality, for any δ > 0,

we have:
P (|q̂a(t)− q(a)| > δ) ≤ 2 exp(−2δ2n).

To confuse a suboptimal arm a with the optimal one, we must have:

q̂a(t) ≥ q̂a∗(t) ⇒ q̂a(t) ≥ q(a) +
∆a

2
, or q̂a∗(t) ≤ q(a∗)− ∆a

2
.

Each of these events happens with probability at most exp(−∆2
an/2), so the probability of incorrect

selection at round t is at most:
2 exp(−∆2

an/2).

Thus, summing over time, the expected number of times arm a is selected due to mistaken ex-
ploitation is bounded by:

E[N exploit
a (T )] ≤ 8 log T

∆a
+ Ca,

for some constant Ca that depends on initial pulls.
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(3) Total Regret. The total regret is:

Regret(T ) =
∑
a̸=a∗

∆a ·
(
E[N explore

a (T )] + E[N exploit
a (T )]

)
,

yielding:

Regret(T ) ≤ εT ·∆max +
∑
a̸=a∗

(
8 log T

∆a
+ Ca

)
.

Extension to Decaying εt. If the exploration rate εt is annealed over time—e.g., εt = Θ(1/
√
t)—then

the number of exploration rounds grows sublinearly in T , reducing the cumulative regret due to
random exploration. In this setting, the overall regret becomes:

Regret(T ) = O

(
T∑
t=1

εt ·∆max

)
+O

∑
a̸=a∗

log T

∆a

 = O

√T ·∆max +
∑
a̸=a∗

log T

∆a

 .

For example, choosing εt = min{1, c/
√
t} ensures that exploration is significant early on but decays

over time, enabling the agent to increasingly exploit the best empirical arm. This strategy achieves
sublinear regret, improving over the linear regret of constant-ε policies while retaining simplicity
and ease of implementation.

6.3.3 Regret of UCB.

UCB achieves strong performance guarantees. Assuming rewards are bounded in [0, 1], UCB sat-
isfies the following regret bound:

Regret(T ) = O

 ∑
a∈A:q(a)<q∗

log T

∆a

 ,

where q∗ = maxa∈A q(a) is the optimal arm value, and ∆a := q∗ − q(a) is the suboptimality
gap of arm a. This gap-dependent bound shows that UCB achieves near-optimal regret in the
stochastic setting, with regret growing logarithmically in T and inversely with the difficulty ∆a of
distinguishing suboptimal arms from the best.

Theorem 6.3 (Regret of UCB). Consider a stochastic multi-armed bandit problem with K = |A|
arms. Assume that the rewards for each arm a ∈ A are independent, drawn from distributions
bounded in [0, 1], and that the true mean rewards q(a) = E[Rt | At = a] are fixed but unknown.

Let q∗ := maxa∈A q(a) denote the optimal arm value, and define the suboptimality gap for arm
a as ∆a := q∗ − q(a). Let At denote the action selected at time t by the UCB algorithm:

At = argmax
a∈A

[
q̂a(t) +

√
2 log t

Na(t)

]
,

where q̂a(t) is the empirical mean reward for arm a up to time t, and Na(t) is the number of times
arm a has been selected.

Then the expected cumulative regret after T rounds satisfies:

Regret(T ) := E

[
T∑
t=1

(q∗ − q(At))

]
= O

( ∑
a∈A:∆a>0

log T

∆a

)
.
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Proof Sketch. We analyze the regret of the UCB1 algorithm. Fix any suboptimal arm a ∈ A with
suboptimality gap ∆a := q∗ − q(a) > 0, where q∗ := maxa q(a). Let Na(T ) denote the number of
times arm a is selected up to time T .

The regret incurred by pulling arm a is ∆a ·Na(T ), so our goal is to bound E[Na(T )].

Step 1: UCB selection condition. Suppose that at round t, arm a is chosen. Then its UCB
must exceed that of the optimal arm a∗:

q̂a(t) +

√
2 log t

Na(t)
≥ q̂a∗(t) +

√
2 log t

Na∗(t)
.

Step 2: Concentration bounds. By Hoeffding’s inequality, with high probability,

q̂a(t) ≤ q(a) +

√
2 log t

Na(t)
, q̂a∗(t) ≥ q∗ −

√
2 log t

Na∗(t)
.

Combining with the selection condition gives:

q(a) + 2

√
2 log t

Na(t)
≥ q∗ = q(a) + ∆a.

Rearranging:

2

√
2 log t

Na(t)
≥ ∆a ⇒ Na(t) ≤

8 log t

∆2
a

.

Step 3: Bounding expected pulls. We now integrate this high-probability bound into the
expected value. After an initial number of explorations (say, one for each arm), the expected
number of times a suboptimal arm a is pulled is bounded by:

E[Na(T )] ≤
8 log T

∆2
a

+ C,

for some constant C that accounts for the low-probability event in which the concentration bound
fails.

Step 4: Regret bound. Summing over all suboptimal arms:

Regret(T ) =
∑

a:∆a>0

∆a · E[Na(T )] = O

( ∑
a:∆a>0

log T

∆a

)
,

as claimed.

6.3.4 Regret of Thompson Sampling.

Thompson Sampling also enjoys strong theoretical guarantees. For Bernoulli bandits, it achieves
the regret bound:

Regret(T ) = O

 ∑
a∈A:q(a)<q∗

log T

∆a

 ,

where q∗ = maxa∈A q(a) is the value of the best arm and ∆a := q∗ − q(a) is the suboptimality
gap. This matches the performance of UCB up to constant factors. Recent analyses also establish
minimax-optimal regret bounds under general reward distributions, making Thompson Sampling
both theoretically and empirically effective.



LECTURE 6. BANDITS, MONTE CARLO PREDICTION, AND CONTROL 9

Theorem 6.4 (Regret of Thompson Sampling for Bernoulli Bandits). Let A = {1, . . . ,K} be a set
of K arms, and suppose rewards are drawn independently from Bernoulli distributions with unknown
means q(a) ∈ [0, 1]. Let q∗ = maxa∈A q(a) and define the suboptimality gap ∆a := q∗ − q(a) for
each arm a.

If Thompson Sampling is run with independent Beta(1, 1) priors over the mean reward of each
arm, then the expected regret after T rounds satisfies:

Regret(T ) = E

[
T∑
t=1

(q∗ − q(At))

]
= O

( ∑
a∈A:∆a>0

log T

∆a

)
.

Proof. We present a sketch of the regret analysis for Thompson Sampling in the Bernoulli bandit
setting, following the approach in [1].

Fix a suboptimal arm a ∈ A with suboptimality gap ∆a := q∗ − q(a) > 0, where q∗ :=
maxa∈A q(a) is the mean reward of the optimal arm. Let Na(T ) denote the number of times arm a
is pulled by round T , and let θa(t) ∼ Beta(αa(t), βa(t)) be the posterior sample for arm a at time
t, based on prior Beta(1, 1) and observed rewards.

The key idea is to bound the expected number of pulls of arm a by decomposing the event that
Thompson Sampling selects arm a into three parts:

E[Na(T )] ≤
T∑
t=1

P(At = a) ≤
T∑
t=1

P(θa(t) ≥ θa∗(t)).

We control the probability that θa(t) exceeds θa∗(t) by:
• Showing that θa∗(t) concentrates near q∗ with high probability using concentration bounds
for Beta distributions,

• Showing that θa(t) remains below q∗ −∆a/2 with high probability, provided arm a has been
pulled sufficiently many times.

More precisely, with Hoeffding-type concentration for Beta posteriors, we can bound:

P(θa(t) > q(a) + ∆a/2) ≤ exp(−2Na(t) ·∆2
a),

and similarly for θa∗(t) being too far below q∗.
Integrating these bounds over time, we show that for each suboptimal arm a:

E[Na(T )] ≤ O

(
log T

∆2
a

)
.

Finally, the expected regret is:

Regret(T ) =
∑

a∈A:∆a>0

∆a · E[Na(T )] = O

( ∑
a:∆a>0

log T

∆a

)
,

as claimed.

6.3.5 Summary.

• Explore-then-Exploit is simple and analyzable, but not adaptive; regret is logarithmic with
suboptimal constants.

• ε-greedy is easy to implement but may suffer high regret unless carefully tuned.
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• UCB provides principled exploration and logarithmic regret in T .

• Thompson Sampling offers a Bayesian alternative with strong empirical and theoretical per-
formance.

• These methods illustrate core ideas in balancing exploration with exploitation and lay the
foundation for more general reinforcement learning algorithms.

6.4 Monte Carlo Prediction

Monte Carlo (MC) methods estimate value functions based on returns observed in complete episodes,
without requiring knowledge of the transition model. These methods are especially suited for
episodic tasks, where episodes eventually terminate.

6.4.1 Estimating vπ via Sampling

Let π be a fixed policy. The goal is to estimate the value function:

vπ(s) = Eπ [Gt | St = s] ,

where the return Gt is defined as the cumulative discounted reward from time t until the end of
the episode:

Gt :=

T−1∑
k=t

γk−tRk+1.

Here, T is the (random) time when the episode terminates.
Monte Carlo methods estimate vπ(s) via empirical averages over sampled episodes:

v̂π(s) =
1

N(s)

N(s)∑
i=1

G
(i)
t ,

where G
(i)
t is the return observed from the i-th visit to state s, and N(s) is the total number of

such visits.

Incremental Monte Carlo Update. Rather than storing all returns, we can update v̂π(s)
incrementally after each visit to state s. Let N(s) denote the number of times s has been visited
(including the current one), and let Gt be the observed return from that visit. Then the update is:

N(s)← N(s) + 1,

v̂π(s)← v̂π(s) +
1

N(s)
(Gt − v̂π(s)) .

This rule incrementally computes the sample average and is equivalent to the standard Monte Carlo
estimate:

v̂π(s) =
1

N(s)

N(s)∑
i=1

G
(i)
t .

6.4.2 State Visits and Return Estimation

We define a visit to state s as any time step t where St = s. Since a state may be visited multiple
times within an episode, different strategies exist for estimating vπ(s).



LECTURE 6. BANDITS, MONTE CARLO PREDICTION, AND CONTROL 11

First-Visit Monte Carlo. Only the first occurrence of each state in an episode is used to
compute its return:

v̂FVπ (s) =
1

NFV(s)

NFV(s)∑
i=1

Gti ,

where ti is the first time s appears in the i-th episode. This estimator uses independent samples
across episodes, which is desirable for theoretical analysis.

Every-Visit Monte Carlo. All visits to a state are used:

v̂EVπ (s) =
1

NEV(s)

NEV(s)∑
j=1

Gtj ,

where tj indexes all time steps in all episodes for which Stj = s. This approach uses more data,
improving efficiency, but the samples are no longer independent.

Figure 6.1: Pseudocode for the First-Visit Monte Carlo prediction algorithm. The return is com-
puted in reverse order at the end of each episode, and each state’s value estimate is updated only
on its first visit within the episode.

6.4.3 Illustrative Example

Consider the following trajectory generated by a random policy in an MDP with discount factor γ:

t = 0, s1, ar → s2, r1 = 0

t = 1, s2, ar → s3, r2 = 0

t = 2, s3, al → s2, r3 = 0

t = 3, s2, ar → s3, r4 = 0

t = 4, s3, ar → sg, r5 = 10

The state and reward sequence is:

(s1, s2, s3, s2, s3, sg), (0, 0, 0, 0, 10)
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Return Computation. We compute the returns Gt from each timestep:

G4 = 10,

G3 = 0 + γ ·G4 = γ · 10,
G2 = 0 + γ ·G3 = γ2 · 10,
G1 = 0 + γ ·G2 = γ3 · 10,
G0 = 0 + γ ·G1 == γ4 · 10,
.

First-Visit MC Estimate.
• First visit to s1 is at t = 0: v̂FVπ (s1) = G0 = γ4 · 10
• First visit to s2 is at t = 1: v̂FVπ (s2) = G1 = γ3(2 + γ2 · 10)
• First visit to s3 is at t = 2: v̂FVπ (s3) = G2 = γ(2 + γ2 · 10)

Every-Visit MC Estimate.
• s1 is visited once: v̂EVπ (s1) = G0

• s2 is visited twice at t = 1 and t = 3: v̂EVπ (s2) =
1
2(G1 +G3)

• s3 is visited twice at t = 2 and t = 4: v̂EVπ (s3) =
1
2(G2 +G4)

This illustrates how first-visit MC uses only the first occurrence per episode, while every-visit
MC aggregates across all visits, leading to more data but possibly higher bias due to sample
dependence.

6.4.4 Comparison and Discussion

Both first-visit and every-visit Monte Carlo methods are unbiased in expectation and converge to
the true value function vπ as the number of visits N(s) → ∞. However, they differ in statistical
properties that affect convergence speed and variance:

• First-Visit MC:

– Uses only the first occurrence of each state per episode,

– Produces independent return samples (one per episode),

– Higher variance due to fewer samples.

• Every-Visit MC:

– Uses all occurrences of a state within an episode,

– Samples are not independent, and may introduce mild bias,

– Typically achieves lower variance in practice.

This tradeoff is illustrated in Figure 6.2, which shows that every-visit estimators typically
reduce the root mean squared error more quickly, especially in early stages of learning. However,
the independence of first-visit samples makes them easier to analyze theoretically and useful for
establishing convergence guarantees.
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Figure 6.2: Empirical comparison of first-visit and every-visit Monte Carlo estimators. Every-visit
tends to converge faster with lower mean squared error, though at the cost of dependent samples.
Adapted from Singh & Sutton (1996).

Estimator Bias Variance Sample Independence

First-Visit Unbiased Higher Yes
Every-Visit Unbiased Lower No

Table 6.1: Comparison of First-Visit and Every-Visit Monte Carlo estimators.

6.4.5 Advantages and Limitations

• Advantages:

– Simple to implement.

– Model-free: does not require knowledge of transitions or rewards.

– Converges under the Law of Large Numbers.

• Limitations:

– Requires episodes to terminate.

– High variance in long episodes.

– Inefficient for continuing tasks.

This avoids storing the full list of returns and only requires maintaining:
• the current value estimate V (s),

• the count of visits N(s).

Advantages.
• Constant memory and runtime per update.

• Particularly useful in long-running or online settings.
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• Easily generalizes to Q(s, a) updates in control algorithms.
This incremental scheme is widely used in practical implementations of Monte Carlo prediction

and control, and forms the foundation for further extensions like TD learning and Q-learning.

6.5 Monte Carlo Control

So far we have used Monte Carlo methods to evaluate a fixed policy. We now turn to the problem
of finding an optimal policy through experience—using only samples collected from interaction
with the environment. This setting, where we do not assume access to a model, is referred to as
model-free control.

Figure 6.3: Generalized Policy Iteration (GPI): Monte Carlo control alternates between evaluating
a policy and improving it based on current estimates.

Generalized Policy Iteration (GPI). Monte Carlo control implements the GPI framework:
given an estimate q̂πk

≈ qπk
, we improve the policy via greedy selection:

πk+1(s) = argmax
a

q̂πk
(s, a).

Figure 6.4: Monte Carlo control viewed as an iterative GPI process: evaluation (E) and improve-
ment (I) steps alternate until convergence.

6.5.1 Monte Carlo Control with Exploring Starts

The MC-ES algorithm guarantees convergence to the optimal policy under the assumption that
every state-action pair (s, a) is visited infinitely often. This is ensured by selecting episodes with
exploring starts—that is, starting from any (s, a) pair with positive probability.

While theoretically sound, exploring starts are impractical in many real-world environments,
where one cannot freely choose arbitrary start states or actions. This motivates an alternative
based on on-policy exploration.
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Figure 6.5: Monte Carlo control with exploring starts (ES): guarantees convergence under the
assumption that all state-action pairs are visited with nonzero probability.

6.5.2 Exploration via Soft Policies

To ensure convergence without access to arbitrary start states, we instead enforce sufficient explo-
ration through soft policies—those that assign nonzero probability to all actions in every state. A
canonical example is the ε-greedy policy.

Definition 6.1 (GLIE). A sequence of policies (πt) is said to satisfy the GLIE (Greedy in the
Limit with Infinite Exploration) conditions if:

• Every action is taken infinitely often in every state:

lim
t→∞

Nt(s, a) =∞, ∀(s, a),

• The policy becomes greedy in the limit:

lim
t→∞

πt(a | s) =

{
1 if a ∈ argmaxa′ Qt(s, a

′),

0 otherwise.

This condition is often satisfied by using an ε-greedy policy with decaying εt, e.g., εt = 1/
√
t.

6.5.3 On-Policy MC Control with ε-Soft Policies

This algorithm improves upon MC-ES by using an ε-soft policy. At each episode:
1. Generate an episode using the current ε-soft policy πt.

2. For each (s, a) in the episode, compute the return Gt and update Q(s, a) using first-visit
Monte Carlo.

3. Update πt to be εt-greedy with respect to Q.
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Figure 6.6: On-policy first-visit Monte Carlo control using ε-soft policies. Ensures sufficient explo-
ration through stochasticity while converging to a greedy policy in the limit.

6.5.4 Convergence Guarantees

Theorem 6.5 (Convergence of Monte Carlo Control). Suppose each episode is generated by an
ε-greedy policy with εt → 0 and the resulting sequence of policies (πt) satisfies GLIE. Then:

lim
t→∞

Qt(s, a) = q∗(s, a), and lim
t→∞

πt = π∗,

with probability 1, for all (s, a).

Remarks.
• Monte Carlo control requires episodic tasks with complete returns from each episode.

• GLIE ensures sufficient exploration and eventual exploitation.

• In practice, convergence can be slow; temporal-difference methods (e.g., SARSA, Q-learning)
often provide faster alternatives.



References for Lecture 17

Concentration of Beta Posterior for Bernoulli Rewards

Lemma .1 (Concentration of Beta Posterior for Bernoulli Rewards). Let X1, . . . , Xn ∼ Bernoulli(q)
be i.i.d. observations with mean q ∈ [0, 1], and let q̂n := 1

n

∑n
i=1Xi be the empirical mean. Suppose

the prior over q is Beta(α, β), and let θ ∼ Beta(α +
∑

Xi, β + n −
∑

Xi) be a sample from the
posterior. Then for any ϵ > 0,

P (θ ≥ q̂n + ϵ) ≤ exp(−2nϵ2), and P (θ ≤ q̂n − ϵ) ≤ exp(−2nϵ2).

Proof. Let Sn :=
∑n

i=1Xi. The posterior distribution after observing X1, . . . , Xn is:

θ ∼ Beta(α+ Sn, β + n− Sn).

This distribution has mean

E[θ] =
α+ Sn

α+ β + n
=

α+ nq̂n
α+ β + n

,

and variance

Var(θ) =
(α+ Sn)(β + n− Sn)

(α+ β + n)2(α+ β + n+ 1)
.

To bound the probability that θ deviates from the empirical mean q̂n, we use the fact that the
posterior is a smooth distribution centered near q̂n, and concentrate our attention on deviations
due to randomness in the sample.

By Hoeffding’s inequality, for the empirical mean q̂n = Sn
n , we have:

P (|q̂n − q| > ϵ) ≤ 2 exp(−2nϵ2).

Now, observe that:
|θ − q| ≤ |θ − q̂n|+ |q̂n − q|.

By the triangle inequality, if both |θ − q̂n| ≤ ϵ/2 and |q̂n − q| ≤ ϵ/2, then |θ − q| ≤ ϵ. Hence, if
|θ − q| > ϵ, then at least one of these two deviations must exceed ϵ/2.

So we can write:

P(|θ − q̂n| > ϵ) ≤ P(|θ − q| > ϵ/2) + P(|q̂n − q| > ϵ/2).

Since θ is a random variable with mean close to q̂n and concentrates as n grows, we can treat both
terms with similar concentration behavior. Using Hoeffding’s inequality again on the second term:

P(|q̂n − q| > ϵ/2) ≤ 2 exp(−nϵ2/2).

And using the fact that the Beta posterior is sharply concentrated around q̂n, we obtain (see
e.g., [Agrawal and Goyal 2012]):

P(|θ − q̂n| > ϵ) ≤ 2 exp(−2nϵ2),

as desired.
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