
Lecture 5

Dynamic Programming and Operator Theory

Goals of this Lecture

1. Understand the limitations of planning methods that rely on full environment models.

2. Introduce the multi-armed bandit problem as a simplified framework for understanding ex-
ploration–exploitation tradeoffs.

3. Define regret and evaluate exploration strategies including ε-greedy, UCB, and Thompson
Sampling.

4. Learn how to estimate value functions via Monte Carlo methods using sampled trajectories.

5. Develop model-free policy improvement techniques using Monte Carlo control and GLIE
strategies.

5.1 Policy Iteration

Overview. Building on our earlier discussions of policy evaluation (Lecture 4) and policy improve-
ment (Lecture 3), we now combine these two ingredients into a complete algorithm for computing
an optimal policy. This method is known as policy iteration.

Algorithm. Let π0 be any initial Markov policy. The policy iteration algorithm proceeds by
alternating policy evaluation and policy improvement:

• For k = 0, 1, 2, . . ., repeat:

1. Policy Evaluation: Compute vπk , the unique fixed point of the Bellman operator Tπk
,

satisfying:
vπk = Tπk

vπk .

2. Policy Improvement: Define a new policy πk+1 by acting greedily with respect to vπk :

πk+1(s) ∈ argmax
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvπk(s′)

]
.

• Termination: Stop when πk+1 = πk; at this point, the policy is optimal.

1

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 2

Preliminary: Proof of Policy Improvement via Operator Theory. Before proving the
convergence of the policy iteration algorithm, we revisit the policy improvement theorem and present
a formal proof using the operator-theoretic perspective. This highlights how monotonicity and
contraction properties underlie the guarantee that greedy updates improve or preserve performance.

Theorem 5.1 (Policy Improvement). Let π be a Markov policy, and define a new policy π′ to be
greedy with respect to the action-value function qπ, i.e.,

π′(s) ∈ argmax
a∈A

qπ(s, a) for all s ∈ S.

Then the new policy π′ satisfies:

vπ
′
(s) ≥ vπ(s), for all s ∈ S.

Moreover, if qπ(s, π′(s)) > vπ(s) for some state s, then vπ
′
(s) > vπ(s), i.e., π′ is strictly better than

π.

Proof. Let Tπ′ denote the Bellman operator associated with the policy π′, and consider the value
function vπ under the current policy π. For any s ∈ S, the greediness of π′ with respect to qπ

implies:

[Tπ′vπ](s) = E
[
Rt+1 + γvπ(St+1) | St = s,At = π′(s)

]
= qπ(s, π′(s)) ≥ vπ(s),

where the last inequality uses the identity vπ(s) =
∑

a π(a | s)qπ(s, a) and the fact that the
maximum over a is at least the expected value.

Thus, we have:
Tπ′vπ ≥ vπ.

Now apply the monotonicity of Tπ′ repeatedly:

vπ ≤ Tπ′vπ ≤ T 2
π′vπ ≤ · · · ≤ lim

k→∞
T k
π′vπ = vπ

′
,

where the last equality follows from the Banach fixed-point theorem, since Tπ′ is a γ-contraction
and thus has a unique fixed point vπ

′
.

Therefore,
vπ

′
(s) ≥ vπ(s) for all s.

Finally, if qπ(s, π′(s)) > vπ(s) for some s, then:

[Tπ′vπ](s) > vπ(s),

which implies that the inequality remains strict in future iterates of Tπ′ , and hence:

vπ
′
(s) > vπ(s).

This completes the proof.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 3

From Local Improvement to Global Optimality. The policy improvement theorem guar-
antees that greedy updates yield non-decreasing value functions. We now show how iteratively
applying this principle—by alternating between policy evaluation and greedy improvement—leads
to global convergence. This is formalized in the following theorem.

Theorem 5.2 (Convergence and Optimality of Policy Iteration). Let M = (S,A, P) be a finite
Markov decision process with discount factor γ ∈ [0, 1), and let π0 ∈ ΠM be any initial Markov
policy. Consider the sequence {πk}k≥0 produced by the policy iteration algorithm. Then the following
holds:

1. (Monotonic Improvement) The value functions improve monotonically:

vπ0(s) ≤ vπ1(s) ≤ vπ2(s) ≤ · · · for all s ∈ S.

2. (Finite Termination) The algorithm terminates in at most |ΠD| = |A||S| steps, where ΠD

is the set of deterministic Markov policies. In particular, termination occurs after finitely
many steps.

3. (Optimality at Termination) When the algorithm terminates with πk+1 = πk, the final
policy πk is optimal:

vπk = v∗, and πk ∈ arg max
π∈ΠM

vπ.

Proof. Let (πk) be the sequence of policies generated by policy iteration. At each step, we perform:

• Policy Evaluation: Compute vπk , the unique fixed point of the Bellman operator Tπk
.

• Policy Improvement: Define

πk+1(s) ∈ argmax
a∈A

qπk(s, a) = argmax
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvπk(s′)

]
.

(1) Monotonic Improvement. From the policy improvement theorem, we have:

vπk+1(s) ≥ vπk(s) for all s ∈ S.

If πk+1 ̸= πk, then there exists at least one state s such that

qπk(s, πk+1(s)) > vπk(s),

which implies strict improvement at that state:

vπk+1(s) > vπk(s).

Hence, the sequence vπk is monotonically non-decreasing and strictly increasing unless the policy
stabilizes.

(2) Finite Termination. Because the number of deterministic stationary policies is finite
(|ΠD| = |A||S|), and each iteration either improves the policy or stops, the algorithm does not visits
the same policy twice and at most can visit |ΠD| distinct policies. Therefore, it must terminate in
finitely many steps.

(3) Optimality at Termination. Suppose the algorithm terminates at some step k, so
πk+1 = πk. Then by definition of the improvement step:

πk(s) ∈ argmax
a

∑
s′,r

p(s′, r | s, a)
[
r + γvπk(s′)

]
,

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 4

which means πk is greedy with respect to vπk . Applying the Bellman optimality principle (Theo-
rem 3.4), it follows that πk is optimal:

vπk = T∗v
πk =⇒ vπk = v∗.

Modified Policy Iteration. Modified Policy Iteration (MPI) interpolates between value itera-
tion and policy iteration. At each iteration, instead of fully solving for the value function vπk as in
standard policy iteration, MPI performs a limited number of Bellman updates to approximate it.
This results in lower computational cost per iteration while preserving convergence to the optimal
policy.

Modified Policy Iteration (MPI) Algorithm
• Initialize an arbitrary Markov policy π0 and initial value v0.

• For k = 0, 1, 2, . . . until convergence:

1. Partial Policy Evaluation: Set v
(k)
0 := vk and perform m iterations of value

iteration for the current policy πk:

v
(k)
j+1 := Tπk

v
(k)
j , j = 0, . . . ,m− 1.

Let vk+1 := v
(k)
m be the result of the approximate evaluation.

2. Policy Improvement: Define a new policy πk+1 that is greedy with respect to
vk+1:

πk+1(s) ∈ argmax
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvk+1(s

′)
]
.

Interpretation and Special Cases.
• When m = 1, MPI reduces to value iteration, where one Bellman update is used per step.

• When m =∞, MPI becomes policy iteration, with exact policy evaluation.

Theorem 5.3 (Convergence of Modified Policy Iteration). Let M = (S,A, P) be a finite Markov
decision process with discount factor γ ∈ [0, 1). Let (vk, πk) be the sequence generated by modified
policy iteration (MPI), where:

• πk ∈ Greedy(vk), i.e., πk(s) ∈ argmaxa
∑

s′,r p(s
′, r | s, a)[r + γvk(s

′)],

• vk+1 := Tm
πk
vk, for some fixed m ≥ 1, where Tπk

is the Bellman operator for πk.
Then:

1. The sequence vk converges to the optimal value function v∗,

2. The corresponding policies πk converge in finitely many steps to an optimal policy π∗,

3. The convergence rate of vk to v∗ is geometric in the ℓ∞ norm.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 5

Remarks. A full convergence proof for Modified Policy Iteration is significantly more involved
than for standard policy or value iteration, and is omitted here. However, it can be shown that the
fixed point of MPI corresponds to the optimal value function. In particular, if at some iteration we
have vk = T∗vk, then vk = v∗ and the corresponding greedy policy is optimal. This confirms that
MPI correctly converges to the optimal solution in finite MDPs, and that any termination point
implies optimality.

Use in Practice. MPI is often favored when solving large-scale MDPs where full policy evaluation
is expensive, and a few evaluation steps offer a reasonable tradeoff between accuracy and speed. It
forms the basis of many approximate dynamic programming and reinforcement learning algorithms.

Discussion. Policy iteration is exact and efficient for small MDPs but can be computationally
intensive when:

• The state space is large (value function evaluation is costly),

• The model p(s′, r | s, a) is not known or cannot be easily queried.
In the next sections, we address these limitations via:
• Modified Policy Iteration (MPI)—a compromise between full evaluation and pure value iter-
ation,

• Sample-based methods such as Monte Carlo and Temporal Difference learning.

5.2 From Planning to Learning

Limitations of Dynamic Programming. The algorithms we have studied so far—such as pol-
icy iteration, value iteration, and modified policy iteration—belong to the class of planning meth-
ods. These approaches assume full knowledge of the MDP model, including the transition dynamics
p(s′, r | s, a). While powerful and foundational, this assumption is unrealistic in many practical
scenarios. In real-world applications, the agent often interacts with an unknown environment, with-
out access to transition probabilities or reward distributions. This renders dynamic programming
infeasible, as computing Bellman updates requires expectations over unknown quantities.

The Need for Sampling-Based Approaches. To address the lack of a known model, we must
turn tomodel-free methods. These approaches allow the agent to learn optimal behavior purely from
experience—by collecting samples through interaction with the environment, rather than querying
the true model. In this setting, the agent observes sequences of transitions (St, At, Rt+1, St+1) and
uses these samples to estimate value functions or improve policies.

Overview of Model-Free Methods. Model-free reinforcement learning methods can be broadly
classified into two categories:

• Value-based methods: These aim to estimate value functions (e.g., vπ or qπ) from data
and use them to derive improved policies. Classical examples include Monte Carlo methods
and temporal-difference learning (TD, TD(λ), Q-learning).

• Policy-based methods: These directly parametrize and optimize policies without explicitly
computing value functions. Examples include REINFORCE, actor-critic methods, and policy
gradient algorithms.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 6

These approaches form the foundation of modern reinforcement learning, enabling learning from
data in complex, high-dimensional, or stochastic environments. In the remainder of the course, we
transition from planning-based techniques to these sample-based learning algorithms.

5.3 Multi-Armed Bandits

Problem Setup. We now move toward learning to make decisions under uncertainty. As a
stepping stone toward full reinforcement learning, we begin with a simplified setting where the
environment has no state. This setting is known as the multi-armed bandit problem.

At each round t = 1, 2, . . ., the agent selects an action At ∈ A = {1, . . . ,K}, and the envi-
ronment responds with a random reward Rt ∈ R, drawn from an unknown distribution p(r | a)
associated with arm a = At. The agent receives no additional feedback (e.g., no state transitions
or next observations). The goal is to select actions to maximize long-term reward.

Policies and Value Functions. A stochastic policy πt assigns probabilities over actions:

πt(a) := P(At = a).

The action-value function is defined as the expected reward of pulling arm a:

q(a) := E[Rt | At = a] =

∫
R
r · p(r | a) dr,

assuming p(r | a) admits a density, or more generally, as a discrete expectation when rewards are
bounded. Importantly, q(a) depends only on the environment and not on the policy.

The value of a policy π is the expected reward when actions are selected according to π:

vπ :=
∑
a∈A

π(a) q(a).

Optimal Value and Regret. The optimal value is the reward of the best arm:

v∗ = max
a∈A

q(a).

We define the expected regret at time t as the difference between the optimal value and the expected
reward at that round:

ℓt := v∗ − E[q(At)].

The total expected regret over T rounds is:

Regret(T) :=
T∑
t=1

ℓt = Tv∗ − E

[
T∑
t=1

q(At)

]
.

Decomposition of Regret. Let ∆a := v∗−q(a) denote the suboptimality gap for arm a. Define
NT (a) as the number of times arm a was pulled up to time T . Then:

Regret(T) =
∑
a∈A

∆a · E[NT (a)],

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 7

or equivalently, using N̄T (a) := E[NT (a)],

Regret(T) =
∑
a∈A

∆a · N̄T (a).

This decomposition shows that regret accumulates in proportion to how often suboptimal arms are
selected.

Key Insight. The challenge in bandit problems is that the suboptimality gaps ∆a are unknown.
The agent must explore to estimate q(a), but also exploit known information to maximize reward.
A well-designed algorithm minimizes regret by concentrating pulls on the best arms, while still
exploring sufficiently to identify them.

5.4 Exploration Strategies

We now describe three foundational strategies for managing the exploration–exploitation tradeoff in
multi-armed bandit problems: ε-greedy, Upper Confidence Bound (UCB), and Thompson Sampling.

ε-Greedy. The ε-greedy strategy maintains empirical estimates q̂a(t) of the expected reward for
each arm a, based on observed samples:

q̂a(t) :=
1

Na(t)

t−1∑
k=1

1{Ak = a} ·Rk,

where Na(t) is the number of times arm a has been selected up to round t. At each time step:
• With probability 1− ε: select the empirically best arm:

At = argmax
a∈A

q̂a(t),

• With probability ε: select an arm uniformly at random.
The parameter ε ∈ (0, 1) determines the exploration rate. To reduce regret, it is often annealed
over time, e.g., εt = 1/

√
t, to emphasize exploration early and exploitation later.

Upper Confidence Bound (UCB). UCB is a frequentist algorithm based on the principle of
optimism in the face of uncertainty. It augments the empirical estimate q̂a(t) with a confidence
bonus that decreases with Na(t), the number of times arm a has been selected:

At = argmax
a∈A

[
q̂a(t) + c ·

√
log t

Na(t)

]
,

where c > 0 is a tunable parameter controlling the degree of optimism. The log t/Na(t) term
encourages early exploration of all arms and gradually shifts toward exploitation as uncertainty
decreases.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 8

Thompson Sampling. Thompson Sampling is a Bayesian exploration strategy that maintains
a posterior distribution over each arm’s expected reward. At each round t, the agent proceeds as
follows:

1. For each arm a ∈ A, sample θa(t) from the posterior distribution over q(a),

2. Select the arm with the highest sampled value:

At = argmax
a∈A

θa(t).

The sampled value θa(t) represents a plausible estimate of the expected reward q(a), drawn from
the agent’s current belief. This randomization induces structured exploration: arms with greater
uncertainty (i.e., wider posterior distributions) are more likely to be selected, even if their current
empirical mean is lower.

Example: Bernoulli Bandits. In the Bernoulli bandit setting, each arm yields binary rewards
Rt ∈ {0, 1}, with unknown mean q(a) = E[Rt | At = a]. The agent models its uncertainty about
each arm’s mean reward q(a) using a Bayesian approach. Specifically, the agent treats q(a) as a
random variable with a prior distribution:

q(a) ∼ Beta(αa, βa),

where αa > 0 and βa > 0 are parameters that encode the agent’s belief about how likely the arm
is to yield rewards of 1 or 0, respectively.

• The Beta distribution is a natural prior for Bernoulli outcomes because it is the conjugate
prior—the posterior remains a Beta distribution after observing data.

• Initially, we use the uniform prior Beta(1, 1), which represents no prior preference for 0 or 1
outcomes.

• Each time arm a is pulled and a reward Rt ∈ {0, 1} is observed, the agent updates the
posterior parameters:

αa ← αa +Rt, βa ← βa + (1−Rt).

That is:

– If Rt = 1, we increment αa, reinforcing the belief that arm a tends to yield reward 1,

– If Rt = 0, we increment βa, reinforcing the belief that arm a tends to yield reward 0.

• After the update, the posterior over q(a) becomes Beta(αa, βa). To choose the next action,
we:

1. Sample a mean reward estimate:

θa(t) ∼ Beta(αa, βa),

2. Select the arm with the highest sample:

At = argmax
a∈A

θa(t).

Interpretation. This strategy is Bayesian because it explicitly models and updates the agent’s
uncertainty about each arm’s mean reward via a posterior distribution. The parameters αa and βa
track the number of observed rewards and failures, respectively. Early in training, the posteriors
are wide (uncertain), promoting exploration. Over time, the posterior concentrates around the
empirical mean, leading to exploitation. Sampling from the posterior thus naturally balances
exploration and exploitation without requiring explicit tuning of exploration parameters.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 9

5.5 Regret Bounds and Performance Guarantees

We now examine the performance of different exploration strategies in terms of cumulative regret.
Recall:

Regret(T) := T · µ∗ −
T∑
t=1

E[µAt],

where µ∗ = maxa µa is the mean reward of the best arm.

Regret of ε-Greedy. With a fixed ε > 0, exploration occurs at a constant rate, leading to linear
regret:

Regret(T) = O(εT + log T).

To achieve sublinear regret, ε must decay over time. For example, εt = Θ(1/
√
t) yields regret

O(
√
T log T), though this requires careful tuning.

Regret of UCB. UCB achieves strong performance guarantees. Assuming bounded rewards
(e.g., r ∈ [0, 1]), UCB satisfies:

Regret(T) = O

 ∑
a:µa<µ∗

log T

∆a

 ,

where ∆a = µ∗−µa is the suboptimality gap. This gap-dependent bound shows that UCB achieves
near-optimal regret rates in stochastic bandits.

Regret of Thompson Sampling. Thompson Sampling also enjoys strong theoretical guaran-
tees. For Bernoulli rewards, it achieves:

Regret(T) = O

 ∑
a:µa<µ∗

log T

∆a

 ,

matching the performance of UCB up to constant factors. Recent results also establish minimax-
optimal bounds under general reward distributions.

Summary.
• ε-greedy is simple but may suffer high regret unless carefully tuned.

• UCB provides principled exploration and logarithmic regret in T .

• Thompson Sampling offers a Bayesian alternative with competitive empirical and theoretical
performance.

• These methods illustrate core ideas in balancing exploration with exploitation and lay the
foundation for more general reinforcement learning algorithms.

5.6 Monte Carlo Prediction

Monte Carlo (MC) methods provide a simple and powerful approach to estimating value func-
tions using sample episodes, without requiring a model of the environment. These methods are
particularly useful when interacting with an environment in an episodic fashion.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 10

Estimating vπ via Sampling. Suppose we have a policy π and wish to estimate its state-value
function vπ(s) = Eπ[Gt | St = s]. Monte Carlo methods estimate this expectation using empirical
averages from sampled episodes:

vπ(s) ≈ 1

N(s)

N(s)∑
i=1

G
(i)
t ,

where G
(i)
t is the return following the i-th occurrence of state s under policy π, and N(s) is the

number of such occurrences.

First-Visit vs Every-Visit Estimators. There are two common variants for generating these
estimates:

• First-Visit MC: Estimate vπ(s) using only the first time state s is visited in each episode.

• Every-Visit MC: Estimate vπ(s) using the return from every occurrence of state s within
the episode.

Both estimators are unbiased under mild assumptions, and converge to the true value function
as the number of episodes goes to infinity. However, the variance and sample efficiency may differ
in practice.

Advantages and Limitations.
• Monte Carlo methods do not require knowledge of the transition probabilities or reward
model.

• They apply naturally in episodic environments and are easy to implement.

• However, they require episodes to terminate and may exhibit high variance.

5.7 Monte Carlo Control

So far we have used Monte Carlo methods to evaluate a fixed policy. We now turn to the problem
of finding an optimal policy through experience—using only samples collected from interaction
with the environment. This setting, where we do not assume access to a model, is referred to as
model-free control.

GLIE and ε-Greedy Policy Improvement. To learn the optimal policy, we combine Monte
Carlo prediction with ε-greedy exploration. The key requirement is that the policy eventually
becomes greedy while still exploring enough in the early stages. This is formalized via the notion
of GLIE (Greedy in the Limit with Infinite Exploration):

Definition 5.1 (GLIE). A sequence of policies (πt) is said to satisfy the GLIE conditions if:
• Every action is taken infinitely often in every state:

lim
t→∞

Nt(s, a) =∞, ∀(s, a),

• The policy becomes greedy in the limit:

lim
t→∞

πt(a | s) =

{
1 if a ∈ argmaxa′ Qt(s, a

′),

0 otherwise.

This condition is often satisfied by using an ε-greedy policy with decaying εt, e.g., εt = 1/t.

LECTURE 5. DYNAMIC PROGRAMMING AND OPERATOR THEORY 11

Algorithm: Monte Carlo Control with ε-Greedy. At each episode:
1. Generate an episode using the current ε-greedy policy πt.

2. For each state-action pair (s, a) in the episode, compute the return Gt and update the action-
value estimate Q(s, a) using first-visit or every-visit Monte Carlo.

3. Update the policy to be εt-greedy with respect to Q.

Convergence Guarantees. The following theorem ensures that under GLIE conditions, Monte
Carlo control converges to the optimal policy:

Theorem 5.4 (Convergence of Monte Carlo Control). Suppose each episode is generated by an
ε-greedy policy with εt → 0 and the resulting sequence of policies (πt) satisfies GLIE. Then:

lim
t→∞

Qt(s, a) = q∗(s, a), and lim
t→∞

πt = π∗,

with probability 1, for all (s, a).

Remarks.
• Monte Carlo control requires episodic tasks with complete returns from each episode.

• GLIE ensures sufficient exploration and eventual exploitation.

• In practice, convergence can be slow; temporal-difference methods (e.g., SARSA, Q-learning)
often provide faster alternatives.

	Dynamic Programming and Operator Theory
	Policy Iteration
	From Planning to Learning
	Multi-Armed Bandits
	Exploration Strategies
	Regret Bounds and Performance Guarantees
	Monte Carlo Prediction
	Monte Carlo Control

