
Lecture 4

Dynamic Programming and Operator Theory

Goals of this lecture

1. Introduce operator-based formalism for reasoning about value functions and policies.

2. Illustrate how policy evaluation and policy improvement can be expressed as operators.

3. Prove key properties of these operators: monotonicity and contraction.

4. Provide rigorous proofs of the policy improvement theorem and Bellman optimality principle.

5. Present and analyze the Value Iteration algorithms as practical instantiations of this theory.

4.1 The Bellman Operator for Policy Evaluation

Motivation. Previously, we saw that the value function vπ satisfies the recursive Bellman expec-
tation equation:

vπ(s) = Eπ[Rt+1 + γvπ(St+1) | St = s].

Rather than viewing this purely as a fixed-point identity, we now define an operator that maps any
function v : S → R to a new function. This operator perspective is both conceptually elegant and
practically powerful.

Definition (Bellman Operator for Policy Evaluation). Given a Markov policy π, define the
Bellman operator Tπ acting on value functions v : S → R as:

[Tπv](s) := Eπ [Rt+1 + γv(St+1)|St = s] .

In finite MDPs, this expression becomes:

[Tπv](s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γv(s′)].

Fixed Point Characterization. It is immediate from the Bellman expectation equation that:

vπ = Tπv
π.

That is, the value function vπ is a fixed point of the operator Tπ. In fact, it is easy to show that
under mild conditions, γ ∈ (0, 1), the fixed point is unique.
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Remarks.
• The operator Tπ maps value functions to value functions: Tπ : RS → RS .

• Intuitively, Tπv gives the expected return when we perform one step of policy π, collect
immediate reward, and continue with value v.

• Computing vπ amounts to finding the fixed point of Tπ, which we can compute exactly (via
matrix inversion) or approximately (via iterative updates).

4.2 The Bellman Optimality Operator

Motivation. Recall that the optimal value function v∗ satisfies the Bellman optimality equation:

v∗(s) = max
a∈A

∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γv∗(s′)].

This naturally suggests defining an operator that captures this maximization. We now introduce
the Bellman optimality operator, which plays a central role in algorithms for computing optimal
policies.

Definition (Bellman Optimality Operator). Define the Bellman optimality operator T∗ act-
ing on value functions v : S → R as:

[T∗v](s) := max
a∈A

∑
s′∈S

∑
r∈R

p(s′, r | s, a) [r + γv(s′)].

This operator aggregates, for each state s, the best expected return over all possible actions,
assuming future values are given by v.

Fixed Point Characterization. The optimal value function v∗ is the unique fixed point of the
Bellman optimality operator:

v∗ = T∗v
∗.

Moreover, any policy π that is greedy with respect to v∗ is an optimal policy:

π(s) ∈ argmax
a∈A

∑
s′,r

p(s′, r | s, a)[r + γv∗(s′)].

Remarks.
• The operator T∗ maps value functions to value functions: T∗ : RS → RS .

• Unlike Tπ, which corresponds to a fixed policy, T∗ selects the best action at each state—introducing
a nonlinearity through the maximization.

• Solving v∗ = T∗v
∗ gives the optimal state values; the corresponding greedy policy yields

optimal behavior.

• This motivates algorithms such as value iteration, which apply T∗ repeatedly to converge to
v∗.
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4.3 Operator Theory in Reinforcement Learning

Motivation. Many core reinforcement learning problems can be cast as solving a fixed-point
equation involving an operator on value functions:

vπ = Tπv
π, v∗ = T∗v

∗.

Understanding the behavior of such operators is essential for designing and analyzing algorithms
such as value iteration and policy iteration.

4.3.1 Operators and Fixed Points

We now formalize a few basic concepts that underpin value function updates and convergence.
Throughout this section, we assume a finite state space S, so the space of real-valued functions on
states is RS ∼= Rn.

Definition (Operator). An operator is a function that maps value functions to value functions:

T : RS → RS .

Operators like Tπ and T ∗ (defined earlier) are central to dynamic programming and reinforcement
learning.

Definition (Fixed Point). A vector v ∈ RS is a fixed point of an operator T if:

Tv = v.

That is, applying T to v returns v itself. The Bellman expectation and optimality equations are
examples of fixed-point equations.

Definition (Norm). A norm assigns a metric to each function v ∈ RS . Common examples
include:

∥v∥∞ := max
s∈S

|v(s)|, ∥v∥1 :=
∑
s∈S

|v(s)|, ∥v∥2 :=
√∑

s∈S
v(s)2.

Each norm induces a notion of distance and convergence, which allows us to study iterative algo-
rithms like value iteration using tools from metric fixed-point theory.

4.3.2 Monotonicity and Contraction

Definition (Monotonicity). An operator T : RS → RS is said to be monotone if for any
v, w ∈ RS ,

v(s) ≤ w(s) ∀s ∈ S ⇒ [Tv](s) ≤ [Tw](s) ∀s ∈ S.

Definition (Contraction). Let ∥ · ∥ be a norm on RS , and let γ ∈ [0, 1). The operator T is a
γ-contraction with respect to this norm if:

∥Tv − Tw∥ ≤ γ∥v − w∥ for all v, w ∈ RS .

Theorem 4.1 (Banach Fixed Point Theorem). Let T : RS → RS be a γ-contraction with respect
to a norm ∥ · ∥, where 0 ≤ γ < 1. Then:
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1. There exists a unique fixed point v∗ ∈ RS such that Tv∗ = v∗.

2. For any initial value v0 ∈ RS , the sequence defined by:

vk+1 := Tvk

converges to v∗.

3. Moreover, the convergence is geometric:

∥vk − v∗∥ ≤ γk∥v0 − v∗∥ for all k ≥ 0.

The proof of theis theorem relies on showing that the sequence generated by T is a Cauchy
sequence.

Definition (Cauchy Sequence). A sequence (vk)k≥0 ⊂ RS is called a Cauchy sequence if for
every ε > 0, there exists an integer N such that:

∥vk − vℓ∥ < ε for all k, ℓ ≥ N.

In a complete normed vector space (like RS), every Cauchy sequence converges to a limit in the
space.

Proof. As mentioned before, we will show that the sequence (vk)k≥0, defined recursively by vk+1 :=
Tvk, is Cauchy.

First, note that by the contraction property:

∥vk+1 − vk∥ = ∥Tvk − Tvk−1∥ ≤ γ∥vk − vk−1∥.

By induction, this implies:
∥vk+1 − vk∥ ≤ γk∥v1 − v0∥.

Now consider, for k > ℓ,

∥vk − vℓ∥ ≤
k−1∑
j=ℓ

∥vj+1 − vj∥ ≤ ∥v1 − v0∥
k−1∑
j=ℓ

γj ≤ γℓ

1− γ
∥v1 − v0∥.

This shows that (vk) is Cauchy, hence converges to some limit v∗ since RS is complete. Taking the
limit in vk+1 = Tvk shows v∗ = Tv∗, i.e., v∗ is a fixed point.

Uniqueness follows from the contraction property: if v∗ and w∗ are fixed points, then

∥v∗ − w∗∥ = ∥Tv∗ − Tw∗∥ ≤ γ∥v∗ − w∗∥,

which implies v∗ = w∗ since γ < 1.

Corollary 4.1 (Termination Criterion). Let T be a γ-contraction and suppose that for some k ≥ 1,

∥vk − vk−1∥ ≤ ε.

Then the distance to the fixed point v∗ is bounded by:

∥vk − v∗∥ ≤ γ

1− γ
∥vk − vk−1∥ ≤ γε

1− γ
.
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Proof. We begin by creating a telescopic series for the term ∥vk − v∗∥:

∥vk − v∗∥ ≤
∞∑
j=0

∥vk+j+1 − vk+j∥ ≤
∞∑
j=0

γj+1∥vk − vk−1∥ = ∥vk − vk−1∥γ
∞∑
j=0

γj .

The geometric series sums to 1/(1− γ), so we obtain:

∥vk − v∗∥ ≤ γ

1− γ
∥vk − vk−1∥.

Substituting the upper bound ∥vk − vk−1∥ ≤ ε completes the proof:

∥vk − v∗∥ ≤ γε

1− γ
.

4.4 Properties of the Bellman Operator Tπ

Setup. Recall the Bellman operator for a fixed Markov policy π, defined for any v : S → R as:

[Tπv](s) := Eπ [Rt+1 + γv(St+1)|St = s] .

We now study the properties of this operator.

Theorem 4.2 (Properties of Tπ). Let Tπ be the Bellman operator associated with a fixed Markov
policy π and assume γ ∈ [0, 1). Then:

1. (Monotonicity) If v(s) ≤ w(s) for all s ∈ S, then [Tπv](s) ≤ [Tπw](s) for all s.

2. (Contraction) For the norm ∥v − w∥∞ := maxs |v(s)− w(s)|, Tπ is a γ-contraction:

∥Tπv − Tπw∥∞ ≤ γ∥v − w∥∞.

3. (Unique Fixed Point) Tπ has a unique fixed point, denoted vπ, and it satisfies vπ = Tπv
π.

Proof.
(1) Monotonicity. Suppose v(s) ≤ w(s) for all s. Then for any s,

[Tπv](s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γv(s′)]

≤
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γw(s′)] = [Tπw](s).

(2) Contraction. For any v, w : S → R, and any s ∈ S,

|[Tπv](s)− [Tπw](s)| =

∣∣∣∣∣∣
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) γ[v(s′)− w(s′)]

∣∣∣∣∣∣
≤ γ

∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) |v(s′)− w(s′)|

≤ γ∥v − w∥∞
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) = γ∥v − w∥∞.
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Taking the maximum over s yields:

∥Tπv − Tπw∥∞ ≤ γ∥v − w∥∞.

(3) Unique fixed point. The Banach fixed point theorem (see previous section) guarantees that since
Tπ is a γ-contraction on the complete metric space (RS , ∥ · ∥∞), it admits a unique fixed point, and
iterating the operator:

vk+1 := Tπvk

converges to vπ for any initial v0.

Value Iteration for Policy Evaluation. The monotonicity and contraction properties of the
Bellman operator Tπ yield a practical algorithm for computing the value function vπ of a fixed
policy π. Starting from any initial guess v0 : S → R, we define a sequence:

vk+1 := Tπvk.

By the Banach Fixed Point Theorem, this sequence converges geometrically to the unique fixed
point vπ:

∥vk − vπ∥ ≤ γk∥v0 − vπ∥.

Early Termination Rule. Suppose that at iteration k we observe:

∥vk − vk−1∥ ≤ ε̄.

Then, the actual distance to the true value function is bounded by:

∥vk − vπ∥ ≤ γ

1− γ
ε̄.

Hence, to guarantee that ∥vk − vπ∥ ≤ ε, it suffices to stop when:

∥vk − vk−1∥ ≤ ε̄ :=
(1− γ)

γ
ε.

Summary. This yields a simple yet principled procedure for evaluating a fixed policy in a finite
MDP:

• Initialize v0 arbitrarily.

• Iterate vk+1 := Tπvk.

• Terminate when ∥vk − vk−1∥ falls below a predefined threshold.

• Guaranteed approximation quality: ∥vk − vπ∥ ≤ ε.

4.5 Properties of the Optimal Bellman Operator T ∗

Definition. The optimal Bellman operator T ∗ is defined as:

[T ∗v](s) := max
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γv(s′)

]
.

This operator corresponds to acting greedily in the one-step lookahead based on the current value
function v. It represents the best possible expected return starting from state s, assuming optimal
decisions are made at each step from then on.
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Theorem 4.3 (Properties of the Optimal Bellman Operator T ∗). Let T ∗ be the optimal Bellman
operator defined by

[T ∗v](s) := max
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γv(s′)

]
,

and let γ ∈ [0, 1). Then:
1. (Monotonicity) If v(s) ≤ w(s) for all s ∈ S, then [T ∗v](s) ≤ [T ∗w](s) for all s.

2. (Contraction) T ∗ is a γ-contraction under the sup-norm:

∥T ∗v − T ∗w∥∞ ≤ γ∥v − w∥∞.

3. (Unique Fixed Point) T ∗ has a unique fixed point v∗, and it satisfies v∗ = T ∗v∗.

Proof. (1) Monotonicity. Assume v(s) ≤ w(s) for all s ∈ S. For any s ∈ S and any a ∈ A,∑
s′,r

p(s′, r | s, a)
[
r + γv(s′)

]
≤

∑
s′,r

p(s′, r | s, a)
[
r + γw(s′)

]
,

since v(s′) ≤ w(s′) and r is the same in both. Taking the maximum over a preserves the inequality:

[T ∗v](s) = max
a

∑
s′,r

p(s′, r | s, a)
[
r + γv(s′)

]
≤

∑
s′,r

p(s′, r | s, a∗)
[
r + γw(s′)

]
(4.1)

≤ max
a

∑
s′,r

p(s′, r | s, a)
[
r + γw(s′)

]
= [T ∗w](s). (4.2)

where a∗ is the maximizer of the first term.
(2) Contraction. Fix s ∈ S. Let

qv(s, a) :=
∑
s′,r

p(s′, r | s, a)
[
r + γv(s′)

]
, qw(s, a) :=

∑
s′,r

p(s′, r | s, a)
[
r + γw(s′)

]
.

Then:

|[T ∗v](s)− [T ∗w](s)| =
∣∣∣max

a
qv(s, a)−max

a
qw(s, a)

∣∣∣
≤ max

a
|qv(s, a)− qw(s, a)| (see lemma below)

= max
a

∣∣∣∣∣∣
∑
s′,r

p(s′, r | s, a) γ[v(s′)− w(s′)]

∣∣∣∣∣∣
≤ γmax

a

∑
s′,r

p(s′, r | s, a)|v(s′)− w(s′)|

≤ γ∥v − w∥∞ (since
∑
s′,r

p(s′, r | s, a) = 1).

Taking the maximum over s gives:

∥T ∗v − T ∗w∥∞ ≤ γ∥v − w∥∞.

(3) Unique Fixed Point. Because T ∗ is a γ-contraction on the complete metric space (RS , ∥·∥∞),
Banach’s Fixed Point Theorem guarantees the existence and uniqueness of a fixed point v∗ such
that T ∗v∗ = v∗, and that iterative application of T ∗ converges to v∗ from any initial value.
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Lemma 4.1 (Max Difference Inequality). Let ϕ, ψ : A → R be two functions. Then:∣∣∣max
a

ϕ(a)−max
a

ψ(a)
∣∣∣ ≤ max

a
|ϕ(a)− ψ(a)|.

Proof. Assume without loss of generality that maxa ϕ(a) ≥ maxa ψ(a). Let a∗ = argmaxa ϕ(a).
Then:

max
a

ϕ(a)−max
a

ψ(a) ≤ ϕ(a∗)− ψ(a∗) ≤ |ϕ(a∗)− ψ(a∗)| ≤ max
a

|ϕ(a)− ψ(a)|.

Value Iteration for Optimal Bellman Operator. The monotonicity and contraction proper-
ties of the optimal Bellman operator T ∗ provide a practical and theoretically grounded method for
computing the optimal value function v∗. Starting from an arbitrary initial guess v0 : S → R, we
define the sequence:

vk+1 := T ∗vk = max
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)
]
.

By the Banach Fixed Point Theorem, this sequence converges to the unique fixed point v∗ at a
geometric rate:

∥vk − v∗∥ ≤ γk∥v0 − v∗∥.

This iterative process is known as value iteration for optimal control.

Early Termination Rule. Suppose that at iteration k, the difference between successive value
estimates satisfies:

∥vk − vk−1∥ ≤ ε̄.

Then the distance to the true optimum is bounded by:

∥vk − v∗∥ ≤ γ

1− γ
ε̄.

Hence, to guarantee that ∥vk − v∗∥ ≤ ε, it suffices to terminate when:

∥vk − vk−1∥ ≤ ε̄ :=
(1− γ)

γ
ε.

Theorem 4.4 (Performance Guarantee for Greedy Policy from Approximate Value). Let vk be an
approximate value function such that

∥vk − vk−1∥∞ ≤ ε
1− γ

γ
, which implies ∥vk − v∗∥∞ ≤ ε,

and define the greedy policy πk with respect to vk as:

πk(s) ∈ argmax
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)
]
.

Then the value function of πk satisfies:

∥vπk − v∗∥∞ ≤ 2ε.
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Proof. Using the triangle inequality, we have:

∥vπk − v∗∥∞ ≤ ∥vπk − vk∥∞ + ∥vk − v∗∥∞.

Since ∥vk − v∗∥∞ ≤ ε, we only need to show ∥vπk − vk∥∞ ≤ ε.
Observe that vπk satisfies the fixed-point equation:

vπk = Tπk
vπk .

Thus:
∥vπk − vk∥∞ = ∥Tπk

vπk − vk∥∞.

By adding and subtracting Tπk
vk and using the contraction property, we get:

∥vπk − vk∥∞ = ∥Tπk
vπk − Tπk

vk + Tπk
vk − vk∥∞

≤ γ∥vπk − vk∥∞ + ∥Tπk
vk − vk∥∞.

Rearranging, we obtain:
(1− γ)∥vπk − vk∥∞ ≤ ∥Tπk

vk − vk∥∞.

Since πk is greedy w.r.t. vk, we have Tπk
vk = T ∗vk. Thus:

∥Tπk
vk − vk∥∞ = ∥T ∗vk − vk∥∞ ≤ ∥T ∗vk − T ∗vk−1∥∞

≤ γ∥vk − vk−1∥ ≤ γε
1− γ

γ
= ε(1− γ)

which finally implies that
∥vπk − vk∥∞ ≤ ε. (4.3)

Thus, combining (4.3) with ∥vk − v∗∥∞ ≤ ε leads to:

∥vπk − v∗∥∞ ≤ ∥vπk − vk∥∞ + ∥vk − v∗∥∞ ≤ 2ε.

Summary. Value iteration provides a general-purpose algorithm for computing optimal solutions
in finite MDPs:

• It produces a sequence of value estimates vk that converges geometrically to the optimal value
function v∗.

• The contraction property yields an explicit stopping rule: to guarantee ∥vk − v∗∥∞ ≤ ε, it

suffices to stop when ∥vk − vk−1∥∞ ≤ (1−γ)
γ ε.

• A greedy policy πk derived from vk satisfies ∥vπk − v∗∥∞ ≤ 2ε, ensuring near-optimal perfor-
mance.

• This method is simple to implement and serves as a foundation for more advanced algorithms
such as policy iteration and approximate dynamic programming.
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