
Lecture 3

Value Functions, Bellman Equations, and Optimality

Goals of this lecture

1. Introduce state-value and action-value functions for evaluating policies.

2. Derive and interpret the Bellman expectation equations for value functions.

3. Formulate policy evaluation as a linear system in finite MDPs.

4. Explain greedy policies and the policy improvement theorem.

5. Define optimal value functions and derive the Bellman optimality equations.

6. Illustrate these concepts using a 2×2 Gridworld example.

3.1 State and Action Value Functions

We have established that, under the Markov assumption, it is sufficient to restrict attention to
Markov stationary policies. We will therefore restrict our attention from now on to π ∈ ΠM . This
enables us to reason about policies in terms of their behavior from each state individually, without
reference to full histories. To evaluate and compare such policies, we define the value functions vπ

and qπ, which quantify the expected return under a given policy π. These functions play a central
role in both theoretical analysis and algorithm design.

State-value function. The state-value function vπ(s) gives the expected return when the agent
starts in state s and thereafter follows policy π:

vπ(s) = Eπ[Gt | St = s], where Gt =

∞∑
k=0

γkRt+1+k.

The function vπ(s) quantifies how desirable it is to be in state s when following policy π, and
provides a foundation for comparing different policies based on their long-term behavior. Crucially,
under the Markov and stationarity assumptions, this expectation is independent of the specific time
step t; the value depends only on the state s, not on when the agent is in that state.

1

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 2

Action-value function. The action-value function qπ(s, a) gives the expected return when the
agent starts in state s, takes action a, and thereafter follows policy π:

qπ(s, a) = Eπ[Gt | St = s,At = a].

As with vπ, this quantity is independent of the specific time step t, depending only on the state-
action pair (s, a) under stationarity. While vπ(s) reflects the overall quality of a state under policy π,
qπ(s, a) captures the expected outcome of committing to action a at state s. This finer granularity
makes qπ particularly valuable for policy improvement, as it allows us to ask: “How much better
(or worse) is this action compared to what the policy would normally do?”

Relation between vπ and qπ. The state-value and action-value functions are closely related.
In fact, vπ(s) can be recovered from qπ(s, a) by averaging over the policy’s action distribution at
state s:

vπ(s) =
∑
a∈A

π(a | s) qπ(s, a).

This expresses the expected return at state s as a weighted combination of the expected returns for
each possible action, weighted by the probability that policy π chooses each action. It highlights how
qπ captures the fine-grained action-level structure that underlies the coarser state-level valuation
encoded by vπ.

Rewriting the RL objective. The state-value and action-value functions provide a compact
way to express the reinforcement learning objective. Given an initial state distribution ρ, the
expected return under policy π is:

Eπ[G0 | S0 ∼ ρ] = ES0∼ρ [v
π(S0)] =

∑
s∈S

ρ(s) vπ(s).

Thus, the RL objective reduces to finding a policy that maximizes this expected value:

max
π

ES0∼ρ [v
π(S0)] .

Moreover, since vπ(s) = EA0∼π(·|s)[q
π(s,A0)] =

∑
a∈A π(a|s)qπ(s, a), we can also rewrite the objec-

tive as:

Eπ[G0 | S0 ∼ ρ] = ES0∼ρ,A0∼π(·|S0) [q
π(S0, A0)] =

∑
s∈S

ρ(s)
∑
a∈A

π(a | s)qπ(s, a),

which naturally leads to or, in summation form:

max
π

ES0∼ρ,A0∼π(·|S0) [q
π(S0, A0)] .

3.2 Bellman Expectation Equations

The value functions vπ and qπ introduced earlier satisfy recursive identities known as the Bellman
expectation equations. These identities express the value of a state (or state-action pair) in terms
of immediate rewards and the value of subsequent states, under the assumption that the agent
continues to follow policy π.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 3

State-value function. The state-value function satisfies the following recursive equation:

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] .

This equation states that the value of a state s under policy π is equal to the expected immediate
reward plus the discounted expected value of the next state.

In environments with finite state, action, and reward spaces, this can be written in summation
form as:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
.

The following theorem rigorously show the derivation of the Bellman Expectation Equation for
the value function vπ.

Theorem 3.1 (Bellman Expectation Equation for vπ). Let π be any Markov policy and vπ(s) its
corresponding state-value function under the discounted return:

Gt =

∞∑
k=0

γkRt+1+k.

Then for all s ∈ S, the value function satisfies the recursive identity:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
.

Proof. Recall the definition of the value function:

vπ(s) = Eπ[Gt | St = s], where Gt =
∞∑
k=0

γkRt+1+k.

By unfolding the return:

vπ(s) = Eπ[Rt+1 + γGt+1 | St = s] = Eπ[Rt+1 | St = s] + γ Eπ[Gt+1 | St = s].

(i) Immediate reward term. Apply the law of total expectation over actions:

Eπ[Rt+1 | St = s] =
∑
a∈A

π(a | s)E[Rt+1 | St = s,At = a]

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a) r.

(ii) Expected future value term. Again applying the law of total expectation:

Eπ[Gt+1 | St = s] =
∑
a∈A

π(a | s)
∑
s′∈S

p(s′ | s, a) vπ(s′).

(iii) Combine both terms. We now substitute both components back into the original expression:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
,

which completes the proof.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 4

Action-value function. The action-value function satisfies a similar recursive identity:

qπ(s, a) = Eπ [Rt+1 + γqπ(St+1, At+1) | St = s,At = a] .

Here, the next action At+1 is drawn from the policy π(· | St+1), reflecting continued use of π.
In the finite case, this expands to:

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)

[
r + γ

∑
a′∈A

π(a′ | s′) qπ(s′, a′)

]
.

Theorem 3.2 (Bellman Expectation Equation for qπ). Let π be any Markov policy and qπ(s, a)
its corresponding action-value function under the discounted return:

Gt =

∞∑
k=0

γkRt+1+k.

Then for all (s, a) ∈ S ×A, the action-value function satisfies the recursive identity:

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)

[
r + γ

∑
a′∈A

π(a′ | s′) qπ(s′, a′)

]
.

Proof. The proof is analogous to the value function case and is omitted here.

Relationship Between vπ and qπ. The state-value and action-value functions are deeply inter-
connected and can be computed from one another.

• From qπ to vπ:

vπ(s) = Eπ [q
π(St, At)|St = s] =

∑
a∈A

π(a | s) qπ(s, a).

This represents the expected value of the action selected by π at state s.

• From vπ to qπ:

qπ(s, a) = E [Rt+1 + γvπ(St+1)|St = s,At = a] =
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
.

This gives the expected return of taking action a in state s, then following policy π.

These expressions are fundamental for policy evaluation and are heavily used in both value-based
and policy-based reinforcement learning algorithms.

While these Bellman expectation equations define the value functions precisely, they are implicit :
the unknown function appears on both sides of the equation. At first glance, it is not obvious how
to compute vπ or qπ directly. The next section shows how, in the finite state and action case, these
equations can be reformulated as a linear system and solved using matrix inversion.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 5

3.3 Exact Policy Evaluation in Finite MDPs

We have seen that the value function vπ satisfies a recursive identity—known as the Bellman
expectation equation—that expresses each state’s value in terms of the expected reward and the
value of successor states. While this provides an elegant conceptual definition, it also reveals an
important practical difficulty: the value function is defined implicitly in terms of itself.

To make this precise, recall that for every state s ∈ S, the value under policy π satisfies:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)
[
r + γvπ(s′)

]
.

This defines a system of |S| equations in |S| unknowns—one for each state—but the equations are
coupled: to compute vπ(s), we must already know the values vπ(s′) for all possible next states s′.

Thus, computing vπ requires solving a set of interdependent equations. In general, this cannot
be done by direct substitution or incremental computation alone. However, in the case of finite
state and action spaces, we can express the full system in matrix-vector form, enabling the use of
efficient numerical linear algebra techniques for exact solution.

Matrix notation. Let us fix a canonical ordering of the states S = {s1, . . . , sn}, and define:
• vπ ∈ Rn: the column vector of state values, with entries vπ(si), i.e. [v

π]i = vπ(si),

• rπ ∈ Rn: the expected immediate reward vector under policy π, with components

[rπ]i =
∑
a

π(a | si)
∑
s′,r

p(s′, r | si, a) r,

• Pπ ∈ Rn×n: the state-transition matrix induced by π, where

[Pπ]ij =
∑
a

π(a | si) p(sj | si, a), and p(sj | si, a) =
∑
r

p(sj , r | si, a).

Bellman equation in matrix form. We begin with the Bellman expectation equation for the
value of state si:

vπ(si) =
∑
a∈A

π(a | si)
∑
sj∈S

∑
r∈R

p(sj , r | si, a) [r + γvπ(sj)] .

We now distribute the sum:

vπ(si) =
∑
a

π(a | si)
∑
sj ,r

p(sj , r | si, a) r + γ
∑
a

π(a | si)
∑
sj ,r

p(sj , r | si, a) vπ(sj).

In the second term, the value vπ(sj) is independent of r, so we can factor it out:

vπ(si) =
∑
a

π(a | si)
∑
sj ,r

p(sj , r | si, a) r + γ
∑
a

π(a | si)
∑
sj

(∑
r

p(sj , r | si, a)

)
vπ(sj).

Now define:
p(sj | si, a) :=

∑
r

p(sj , r | si, a),

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 6

and plug this in:

vπ(si) =
∑
a

π(a | si)
∑
sj ,r

p(sj , r | si, a) r + γ
∑
a

π(a | si)
∑
sj

p(sj | si, a) vπ(sj).

We now group the first term and define:

[rπ]i :=
∑
a

π(a | si)
∑
sj ,r

p(sj , r | si, a) r,

and define the entries of the transition matrix under policy π:

[Pπ]ij :=
∑
a

π(a | si) p(sj | si, a).

Thus, the second term becomes:∑
sj

[Pπ]ij · vπ(sj) = [Pπvπ]i.

Putting it all together, we arrive at:

vπ(si) = [rπ]i + γ[Pπvπ]i,

which holds for all states si, so we recover the matrix form:

vπ = rπ + γPπvπ.

Rearranging gives a linear system:

(I− γPπ)vπ = rπ,

where I is the identity matrix.

Existence and uniqueness of the solution. For 0 < γ < 1, the matrix (I− γPπ) is invertible
because γPπ is a contraction (its spectral radius is strictly less than 1). Therefore, the system has
a unique solution:

vπ = (I− γPπ)
−1rπ.

Interpretation. This formulation shows that evaluating a fixed policy π in a finite MDP reduces
to solving a system of linear equations. Although the Bellman equations are defined recursively, the
matrix form allows us to solve for all state values simultaneously using standard techniques. This
insight forms the foundation for exact dynamic programming methods such as policy iteration and
provides a baseline for evaluating the performance of approximate methods in large or continuous
environments.

In the next section, we build on this foundation to explore how value estimates can be used to
improve policies—and ultimately compute optimal behavior.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 7

3.4 Greedy Policies and Policy Improvement

Motivation for Greedy Improvement. Once we have evaluated a policy π by computing
its action-value function qπ(s, a), it becomes natural to ask: can we do better? Recall that the
state-value function is given by

vπ(s) =
∑
a∈A

π(a | s) qπ(s, a),

which represents the expected return in state s under policy π.
If there exists an action a such that qπ(s, a) > vπ(s), then that action outperforms the policy’s

current behavior at s. This observation suggests a simple strategy for improvement: define a new
policy that, at each state, chooses the action with the highest estimated return.

Greedy Policy. We say that a policy π′ is greedy with respect to qπ if, for each state s ∈ S, it
satisfies:

π′(s) ∈ argmax
a∈A

qπ(s, a).

This construction selects actions that appear best under the value estimates computed from π.
Using the Bellman expectation identity for qπ(s, a), we can equivalently write:

π′(s) ∈ argmax
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
.

Such greedy policies form the basis of policy improvement algorithms. We now formalize why they
lead to improved or equally good performance.

Theorem 3.3 (Policy Improvement). Let π be a Markov policy, and let π′ be a policy greedy with
respect to qπ, i.e.,

π′(s) ∈ argmax
a∈A

qπ(s, a) for all s ∈ S.

Then the new policy π′ is at least as good as π, formally:

vπ
′
(s) ≥ vπ(s), ∀s ∈ S.

Furthermore, if for some state s ∈ S, the chosen greedy action satisfies:

qπ(s, π′(s)) > vπ(s),

then vπ
′
(s) > vπ(s), making π′ strictly better than π.

Proof. The simplest proof of this result follows from Monotone operator theory. We relegate it
until, such theory si properly developed next class.

3.5 Optimality and Bellman Optimality Equations

Optimal Value Functions. The optimal state-value function v∗ specifies the best achievable
return from each state:

v∗(s) := max
π∈ΠM

vπ(s),

and similarly, the optimal action-value function is defined as:

q∗(s, a) := max
π∈ΠM

qπ(s, a).

These functions quantify the long-term performance of the best possible behavior an agent can
exhibit, assuming it starts in a given state or state-action pair.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 8

Bellman Optimality Equations. The optimal value functions satisfy the following recursive
identities, known as the Bellman optimality equations:

v∗(s) = max
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γv∗(s′)

]
,

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s′, a′)

]
.

These equations characterize the value of being in a state (or taking an action) assuming optimal
behavior thereafter.

Theorem 3.4 (Bellman Optimality Principle). Let v∗ and q∗ be the optimal state-value and action-
value functions for a finite MDP with discount factor 0 < γ < 1. Then:

1. The functions v∗ and q∗ satisfy the Bellman optimality equations:

v∗(s) = max
a∈A

∑
s′,r

p(s′, r | s, a)
[
r + γv∗(s′)

]
,

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′∈A
q∗(s′, a′)

]
.

2. Any policy π∗ that is greedy with respect to v∗ or q∗ is optimal; i.e.,

π∗(s) ∈ argmax
a∈A

q∗(s, a) ⇒ vπ
∗
(s) = v∗(s) ∀s ∈ S.

Corollary 3.1 (Existence of Deterministic Optimal Policy). For any finite MDP with discount
factor 0 < γ < 1, there exists a deterministic Markov policy π∗ : S → A that is optimal. That is,
there exists a policy such that:

π∗(s) ∈ argmax
a∈A

q∗(s, a) for all s ∈ S,

and this policy achieves the optimal value function:

vπ
∗
(s) = v∗(s) for all s ∈ S.

Implications. This result has several important consequences:
• To find an optimal policy, it suffices to find a value function v (or q) that satisfies the Bellman
optimality equation.

• Any greedy policy with respect to such a function is guaranteed to be optimal.

• There is no loss of generality in focusing on deterministic, Markov stationary policies when
searching for optimal solutions.

This theoretical foundation underlies many practical algorithms, including policy iteration, value
iteration, and Q-learning, which we will study in future lectures.

3.6 Running Example: 2×2 Gridworld

We revisit a simplified 2× 2 Gridworld to illustrate value functions concretely. The agent starts in
one of four states, with transitions governed by a fixed policy. The goal is to reach the terminal
state s4, which yields a reward of +1. Other rewards vary depending on the transition.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 9

State-Value Function under Different Policies. We consider two fixed policies:
• Policy A (Deterministic): Always move down if possible, otherwise go right if possible.

• Policy B (Stochastic): From state s1, move down or right with equal probability, otherwise
follow policy A.

Figure 3.1 illustrates the transition dynamics under each policy.

(a) Deterministic policy (b) Stochastic policy

Figure 3.1: Transition and reward dynamics under two different policies.

Computed State Values under πdet. Computing the value function vπdet is simple in this case;
we assume γ = 0.9. Starting from s4:

vπ(s4) = Eπ[Gt | St = s4] =
∞∑
k=0

γk · 1 =
1

1− 0.9
= 10.

Continuing with s3, note that the policy πdet deterministically moves right to s4, which yields a
reward of 1 and transitions to a state with value 10:

vπdet(s3) = Eπdet
[Rt+1 + γvπdet(St+1) | St = s3] = 1 + γvπdet(s4) = 1 + 0.9 · 10 = 10.

From s2, the policy πdet moves down to s4 and receives a reward of 1:

vπdet(s2) = Eπdet
[Rt+1 + γvπdet(St+1) | St = s2] = 1 + γvπdet(s4) = 1 + 0.9 · 10 = 10.

From s1, the deterministic policy πdet moves down to s2, where we already know the value is 10.
The immediate reward is 0:

vπdet(s1) = Eπdet
[Rt+1 + γvπdet(St+1) | St = s1] = 0 + γvπdet(s2) = 0.9 · 10 = 9.

Computed State Values under πstoch. For the stochastic policy πstoch, the transitions from
s2, s3, and s4 are the same as in the deterministic case:

vπstoch(s4) = 10, vπstoch(s3) = 10, vπstoch(s2) = 10.

At s1, the policy chooses between: - going right to s3 with reward −1, and - going down to s2
with reward 0, each with probability 0.5. Thus:

vπstoch(s1) = 0.5 · (−1 + γ · v(s3)) + 0.5 · (0 + γ · v(s2))
= 0.5 · (−1 + 9) + 0.5 · (9) = 4 + 4.5 = 8.5.

These values are consistent with Table 3.1.
The table below shows the computed state-value function vπ(s) for each policy, assuming γ =

0.9.

LECTURE 3. VALUE FUNCTIONS, BELLMAN EQUATIONS, AND OPTIMALITY 10

State s1 s2 s3 s4

vπdet(s) 9 10 10 10
vπstoch(s) 8.5 10 10 10

Table 3.1: State-value function vπ(s) under two policies.

Action Values and Policy Improvement. To illustrate the usefulness of action-values qπ(s, a),
consider the stochastic policy πstoch at state s1. The two available actions are:

• down → s2 with reward 0,

• right → s3 with reward −1.
We compute:

qπstoch(s1,down) = 0 + γ · vπstoch(s3) = 0.9 · 10 = 9.0,

qπstoch(s1, right) = −1 + γ · vπstoch(s2) = −1 + 0.9 · 10 = 8.0.

The action “down” yields a higher expected return. This suggests that a greedy policy im-
provement step would prefer “down” deterministically—matching the behavior of the deterministic
policy. This illustrates how qπ helps identify better actions even when starting from a subopti-
mal policy. This simple gridworld demonstrates how value functions propagate rewards, and how
action-values reveal suboptimalities in policies—central concepts in reinforcement learning.

	Value Functions, Bellman Equations, and Optimality
	State and Action Value Functions
	Bellman Expectation Equations
	Exact Policy Evaluation in Finite MDPs
	Greedy Policies and Policy Improvement
	Optimality and Bellman Optimality Equations
	Running Example: 2×2 Gridworld

