
Lecture 2

Returns, Occupancy Measures, and the RL Objective

Goals of this lecture

1. Introduce the concept of discounted return and distinguish episodic vs. continuing tasks.

2. Define the RL objective as maximizing expected discounted return.

3. Introduce the discounted state-action occupancy measure and its use in RL.

4. Derive the marginal balance equation satisfied by the occupancy.

5. Show that stationary policies are sufficient by constructing one with equal performance.

2.1 Return and Task Types

We now formally introduce the concept of return, which quantifies the cumulative reward received
by the agent and provides the basis for defining the reinforcement learning objective. We then
describe two main categories of reinforcement learning tasks, emphasizing how the notion of return
applies to each scenario.

Return. In reinforcement learning, the agent aims to maximize the cumulative reward it receives
over time. Formally, we define the discounted cumulative reward, or return, from time step t onward
as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+1+k,

where γ ∈ [0, 1] is the discount factor, controlling how much immediate rewards are favored over
future rewards.

The structure and interpretation of this return depend significantly on the type of reinforce-
ment learning task considered—specifically, whether the task has a natural ending or continues
indefinitely.

Reinforcement learning tasks typically fall into two main categories: episodic and continuing.
Both task types utilize the same definition of the return Gt, but they interpret it slightly differently
based on whether interactions have natural termination points.
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Episodic Tasks. An episodic task involves sequences of interactions called episodes. Each episode
begins in an initial state (usually drawn from a given distribution) and ends when a particular
terminal state or goal is reached. Examples of episodic tasks include games with well-defined
endings or navigation tasks with specific target states.

In episodic tasks, the return from time step t until the termination of the episode at step T is
naturally finite and commonly defined using a discount factor γ ∈ [0, 1]:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−t−1RT .

The termination time T is finite, but not necessarily fixed. Instead, represents a random variable
describing the length of the episode (when the goal is reached or the game has ended).

Continuing Tasks. A continuing task, in contrast, does not have natural termination points,
and interactions proceed indefinitely. Examples include ongoing process control or continuous
monitoring scenarios.

Because the sequence of rewards continues indefinitely, continuing tasks must use a discount
factor strictly less than 1 (γ < 1) to ensure the return remains finite and well-defined:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+1+k.

Note that if rewards are bounded by some finite constant r̄, i.e., |Rt| ≤ r̄ for all t, then having
γ < 1 ensures the return Gt is finite, since it is bounded by:

|Gt| ≤
∞∑
k=0

|γkRt+1+k| ≤ r̄

∞∑
k=0

γk =
r̄

1− γ
.

Connecting Episodic and Continuing Tasks. Although episodic and continuing tasks differ
in structure, the objective in both scenarios is identical: maximizing the expected discounted
return Gt. In fact, episodic tasks can be viewed as special cases of continuing tasks by considering
each terminal state as an absorbing state that transitions only to itself with reward zero. Under
this interpretation, the discounted return in episodic tasks naturally matches the continuing-task
formulation. This equivalence clarifies that a unified theoretical and algorithmic framework applies
to both task types, as discussed in detail by Sutton and Barto [1, Section 3.4].

Other Task Settings. In addition to the discounted episodic and continuing tasks discussed
above, there are two other common formulations worth mentioning.

The first is the fixed-horizon episodic setting, where each episode lasts exactly T steps, regardless
of the agent’s behavior. The return in this case is defined as a finite sum of rewards over the horizon:

Gt = Rt+1 +Rt+2 + · · ·+RT =
T−t−1∑
k=0

Rt+1+k.

This setting is common in planning and control tasks with a fixed deadline or known duration.
The second is the average-reward formulation for continuing tasks, where the objective is to

maximize the expected average reward per time step in the limit:

Ḡ = lim
T→∞

1

T

T−1∑
t=0

Rt+1.
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This objective is particularly useful in ongoing processes where discounting is either unnatural or
undesirable, such as in operations research or steady-state control.

While both of these settings are important in specific domains, we will not focus on them in
this course. Instead, we adopt the discounted return formulation, which unifies the treatment of
both episodic and continuing problems and serves as the foundation for most modern reinforcement
learning algorithms.

2.2 The Reinforcement Learning Objective

Having defined the concept of return, we can now formally state the primary goal of reinforcement
learning.

Problem Formulation. Given a Markov decision process M = (S,A, P ) and an initial state
distribution ρ, the agent’s objective is to find a policy π that maximizes the expected discounted
return. Formally, we seek:

π∗ = argmax
π∈Π

Eπ[G0 | S0 ∼ ρ],

where Π denotes the set of all possible (history-dependent) policies, and the expectation Eπ[·] is
taken over the distribution of trajectories induced by the policy π.

Occupancy Measure. To analyze and compare policies, it is useful to define a quantity that
captures the frequency with which each state-action pair is visited under a given policy. For any
policy π ∈ Π and initial state distribution ρ, the discounted state-action occupancy measure is
defined as:

ργπ(s, a) := (1− γ)

∞∑
t=0

γt Pπ(St = s,At = a | S0 ∼ ρ).

This defines a valid probability distribution over S×A whenever γ < 1, and it encodes the expected
discounted visitation frequencies of state-action pairs under π. The marginal over states is given
by:

ργπ(s) :=
∑
a∈A

ργπ(s, a) = (1− γ)

∞∑
t=0

γt Pπ(St = s | S0 ∼ ρ),

which can be interpreted as the total discounted frequency of visits to state s.
The RL objective can then be written in terms of the occupancy measure as:

Eπ[G0 | S0 ∼ ρ] =
1

1− γ

∑
s,a

ργπ(s, a) r(s, a),

where r(s, a) = E[Rt+1 | St = s,At = a] is the expected immediate reward.

Theorem 2.1 (Marginal Consistency of Discounted Occupancy). Let π ∈ Π be any policy (possibly
history-dependent), and let ργπ(s, a) and ργπ(s) denote its discounted occupancy measure and state
marginal, respectively. Then ργπ(s) satisfies the following equation:

ργπ(s
′) = (1− γ) ρ(s′) + γ

∑
s,a

ργπ(s, a) p(s
′ | s, a).
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Proof. By definition, the discounted state marginal under π is:

ργπ(s
′) = (1− γ)

∞∑
t=0

γt Pπ(St = s′ | S0 ∼ ρ).

We split the sum into the t = 0 term and the rest:

= (1− γ)Pπ(S0 = s′ | S0 ∼ ρ) + (1− γ)

∞∑
t=1

γt Pπ(St = s′ | S0 ∼ ρ).

Since S0 ∼ ρ, the first term equals (1− γ) ρ(s′). Reindexing the second sum:

= (1− γ) ρ(s′) + γ(1− γ)
∞∑
t=0

γt Pπ(St+1 = s′ | S0 ∼ ρ).

Now apply the law of total probability:

Pπ(St+1 = s′ | S0 ∼ ρ) =
∑
s,a

Pπ(St = s,At = a | S0 ∼ ρ) p(s′ | s, a).

Substitute this into the sum:

γ(1− γ)

∞∑
t=0

γt
∑
s,a

Pπ(St = s,At = a | S0 ∼ ρ) p(s′ | s, a).

Rearrange sums:

= γ
∑
s,a

[
(1− γ)

∞∑
t=0

γtPπ(St = s,At = a | S0 ∼ ρ)

]
p(s′ | s, a).

Recognize the term in brackets as ργπ(s′, a′), so we obtain:

ργπ(s
′) = (1− γ) ρ(s′) + γ

∑
s,a

ργπ(s, a) p(s
′ | s, a).

Corollary 2.1 (Fixed Point Equation for State Occupancy under Markov Policies). Let π̄ ∈ ΠM

be a stationary Markov policy and let ρ be the initial state distribution. Then the discounted state
occupancy measure ργπ̄(s) satisfies:

ργπ̄(s
′) = (1− γ) ρ(s′) + γ

∑
s

ργπ̄(s)pπ̄(s
′|s),

where pπ̄(s
′|s) :=

∑
a p(s

′ | s, a) π̄(a | s).

Adequacy of Markov Policies. While the general problem formulation allows for arbitrary
history-dependent policies, an important simplification arises when the environment dynamics sat-
isfy the Markov property. In particular, one might question whether restricting attention to Marko-
vian (stationary) policies π ∈ ΠM , which select actions based solely on the current state, results in
any loss of optimality. Remarkably, under mild technical conditions, it can be rigorously established
that the set of Markovian stationary policies ΠM is sufficient to achieve optimal performance:

max
π∈Π

Eπ[G0 | S0 ∼ ρ] = max
π∈ΠM

Eπ[G0 | S0 ∼ ρ].

This property, known as the adequacy of Markov policies, significantly simplifies both theoretical
analysis and algorithmic design. Henceforth, our search for optimal policies will be confined to the
class of Markovian stationary policies without loss of generality.
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Theorem 2.2 (Adequacy of Markov Stationary Policies). Let π ∈ Π be any (possibly history-
dependent) policy, and let ρ be the initial state distribution. Define the discounted state–action
occupancy measure of π as:

ργπ(s, a) := (1− γ)
∞∑
t=0

γt Pπ(St = s,At = a | S0 ∼ ρ).

Let the state-marginal be ργπ(s) :=
∑

a ρ
γ
π(s, a). Now define a stationary Markov policy π̄ by:

π̄(a | s) :=

{
ργπ(s,a)
ργπ(s)

if ργπ(s) > 0,

any distribution on A otherwise.

Then π̄ ∈ ΠM , and the following holds:
1. The occupancy measures agree: ργπ̄(s, a) = ργπ(s, a) for all (s, a).

2. The expected returns are equal: Eπ̄[G0 | S0 ∼ ρ] = Eπ[G0 | S0 ∼ ρ].

Proof. Let π ∈ Π be any policy, and let ργπ(s, a) be its discounted occupancy measure with state
marginal ργπ(s). Define π̄ ∈ ΠM via:

π̄(a | s) :=

{
ργπ(s,a)
ργπ(s)

if ργπ(s) > 0,

any distribution over A otherwise.

Our goal is to show that ργπ̄(s, a) = ργπ(s, a), and therefore both policies yield the same expected
return.

Step 1: Show that ργπ(s) satisfies the fixed-point equation for π̄. From Theorem 2.1, the
marginal state occupancy under π satisfies:

ργπ(s
′) = (1− γ) ρ(s′) + γ

∑
s,a

ργπ(s, a) p(s
′ | s, a).

Now consider the fixed-point equation for the marginal occupancy under π̄, as given in Corol-
lary 2.1:

ργπ̄(s
′) = (1− γ) ρ(s′) + γ

∑
s

ργπ̄(s) pπ̄(s
′ | s),

where pπ̄(s
′ | s) :=

∑
a π̄(a | s) p(s′ | s, a).

We now check that ργπ(s) satisfies this equation. Start with:∑
s

ργπ(s) pπ̄(s
′ | s) =

∑
s

ργπ(s)
∑
a

π̄(a | s) p(s′ | s, a)

=
∑
s

∑
a

ργπ(s)
ργπ(s, a)

ργπ(s)
p(s′ | s, a)

=
∑
s,a

ργπ(s, a) p(s
′ | s, a),

where we used the definition of π̄(a | s). Substituting into the RHS of the fixed-point equation:

(1− γ) ρ(s′) + γ
∑
s,a

ργπ(s, a) p(s
′ | s, a),

which matches ργπ(s′) from Theorem 2.1. Therefore, ργπ(s) satisfies the fixed-point equation for the
Markov policy π̄, and by uniqueness of the solution (under finite state/action spaces and γ < 1),
we conclude:

ργπ̄(s) = ργπ(s), ∀s ∈ S.
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Step 2: Recover ργπ̄(s, a) from marginals. Using the fact that ργπ̄(s, a) = ργπ̄(s) π̄(a | s), we
compute:

ργπ̄(s, a) = ργπ(s)
ργπ(s, a)

ργπ(s)
= ργπ(s, a),

for all s, a such that ργπ(s) > 0, and by construction the same holds for ργπ(s) = 0.

Step 3: Conclude return equivalence. Since ργπ̄(s, a) = ργπ(s, a), the expected discounted
return is the same:

Eπ̄[G0 | S0 ∼ ρ] =
1

1− γ

∑
s,a

ργπ̄(s, a) r(s, a) =
1

1− γ

∑
s,a

ργπ(s, a) r(s, a) = Eπ[G0 | S0 ∼ ρ].
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