

Foundations of RL Lecture 10: Modern RL Algorithms

Enrique Mallada

Goals:

- Value-Based Methods
 - Intro, Q-Learning, Guarantees
- Advanced Methods
 - Practical Issues and Solutions, Improvements
 - Applications to Continuous Action Spaces
 - Advanced Discrete-Actions Methods

Value-Based Methods

- Intro to Value-Based Methods
- Q-Learning
- Guarantees
- Practical Issues and Solutions

Value-Based Methods

Intro to Value-Based Methods

- Policy Iteration
- (Fitted) Value Iteration
- (Fitted) Q Iteration

Q-Learning

- Why can Q iteration be off-policy?
- What are we optimizing and how?
- Online Q Iteration
- Exploration

Guarantees

- Exist for tabular case
- Not with function approximation

Mnih et al. Human-level control through deep reinforcement learning. *Nature* **518**, 529-533 (2015).

Intro to Value-Based Methods

- Policy Iteration
- (Fitted) Value Iteration
- (Fitted) Q Iteration

Recap: Actor-Critic

Batch Actor-Critic Algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
- Actor-critic algorithms
- Policy evaluation
- Discount factors
- Actor-critic algorithm design
- State-dependent baselines
- Off-Policy Actor-Critic
- Advanced policy gradient methods

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Can we omit the policy gradient?

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: advantage; how much better \mathbf{a}_t is than the average action according to π argmax $_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: best action from \mathbf{s}_t if we then follow π

- \rightarrow at least as good as any $\mathbf{a}_t \sim \pi(\mathbf{a}_t|\mathbf{s}_t)$
- \rightarrow regardless of what $\pi(\mathbf{a}_t|\mathbf{s}_t)$ is!

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases}$$

as good as π (better unless π is optimal)

Policy Iteration

Policy iteration algorithm:

While not converged:

- 1. Evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$ 2. Set $\pi \leftarrow \pi'$ How?

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases}$$

Recall:
$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

How do we evaluate $V^{\pi}(\mathbf{s})$?

Tabular RL: Dynamic Programming

Assume we know $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ (i.e. transition probabilities).

$V^{\pi}(s_{11})$	$V^{\pi}(s_{12})$	$V^{\pi}(s_{13})$	$V^{\pi}(s_{14})$
$V^{\pi}(s_{21})$	$V^{\pi}(s_{22})$	$V^{\pi}(s_{23})$	$V^{\pi}(s_{24})$
$V^{\pi}(s_{31})$	$V^{\pi}(s_{32})$	$V^{\pi}(s_{33})$	$V^{\pi}(s_{34})$
$V^{\pi}(s_{41})$	$V^{\pi}(s_{42})$	$V^{\pi}(s_{43})$	$V^{\pi}(s_{44})$

For example, in a system with 16 states and 4 actions per state:

We can store $V^{\pi}(\mathbf{s})$ in a table \mathcal{T} is $16 \times 16 \times 4$

$$\mathcal{T}$$
 is $16 \times 16 \times 4$

Bootstrapped update: $V^{\pi}(\mathbf{s}) \leftarrow E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]]$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases} \longrightarrow \text{deterministic; } \pi(\mathbf{s}) = \mathbf{a}$$

$$V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]$$

Policy Iteration Using Dynamic Programming

Policy iteration algorithm:

While not converged:

- 1. Evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$ 2. Set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases}$$

$$V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]$$

$V^{\pi}(s_{11})$	$V^{\pi}(s_{12})$	$V^{\pi}(s_{13})$	$V^{\pi}(s_{14})$
$V^{\pi}(s_{21})$	$V^{\pi}(s_{22})$	$V^{\pi}(s_{23})$	$V^{\pi}(s_{24})$
$V^{\pi}(s_{31})$	$V^{\pi}(s_{32})$	$V^{\pi}(s_{33})$	$V^{\pi}(s_{34})$
$V^{\pi}(s_{41})$	$V^{\pi}(s_{42})$	$V^{\pi}(s_{43})$	$V^{\pi}(s_{44})$

policy evaluation

Even Simpler: Value Iteration

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases}$$

$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')]$$

$$\operatorname{argmax}_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \operatorname{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

$$\operatorname{argmax}_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \to \operatorname{policy}$$

Value Iteration Algorithm:

- 1. Set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. Set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$ Implicitly updates policy

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]$$

$$V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$$

Fitted Value Iteration

$$|\mathcal{S}| \sim (255^3)^{256 \times 256}$$

Curse of dimensionality!

Fitted Value Iteration Algorithm:

1. Set
$$y_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V(\mathbf{s}_i')])$$

1. Set
$$y_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V(\mathbf{s}'_i)])$$

2. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_{i} ||V_{\phi}(\mathbf{s}_i) - y_i||^2$

$$\mathcal{L}(\phi) = ||V_{\phi}(\mathbf{s}) - \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})||^{2}$$

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})}[V^{\pi}(\mathbf{s}')]$$

What if transition probabilities are unknown?

Fitted Value Iteration Algorithm:

While not converged:

- 1. Set $y_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V(\mathbf{s}'_i)])$ 2. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||V_{\phi}(\mathbf{s}_i) y_i||^2$

Need to know outcomes for different actions!

Policy iteration algorithm:

- 1. Evaluate $Q^{\pi}(\mathbf{s}, \mathbf{a}) \longrightarrow \mathcal{C}V^{\pi}(\mathbf{s}) \leftarrow r(\mathbf{s}, \pi(\mathbf{s})) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}' | \mathbf{s}, \pi(\mathbf{s}))}[V^{\pi}(\mathbf{s}')]$ 2. Set $\pi \leftarrow \pi'$

- $\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases} \mathbf{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})} [Q^{\pi}(\mathbf{s}', \pi(\mathbf{s}'))]$

Fitted Q Iteration

Policy iteration algorithm:

While not converged:

- 1. Evaluate $V^{\pi}(\mathbf{s}, \mathbf{a})$ 2. Set $\pi \leftarrow \pi'$

Fitted Value Iteration Algorithm:

While not converged:

- 1. Set $y_i \leftarrow \max_{\mathbf{a}_i} (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V(\mathbf{s}'_i)])$ 2. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum ||V_{\phi}(\mathbf{s}_i) y_i||^2$

Can we do a similar thing with Q, removing the need to know transition probabilities?

Fitted Q Iteration Algorithm:

While not converged:

approximate $E[V(\mathbf{s}_i')] \approx \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$

- 1. Set $y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}'_i)]$ 2. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) y_i||^2$
 - > Don't need to try over all actions; only uses those that were sampled!

Fitted Q Iteration

Full Fitted Q Iteration Algorithm:

While not converged:

- 1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy Until data refresh:

 - 2. Set $y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$ 3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) y_i||^2$

Hyperparameters:

- **Collection policy**
- **Dataset size**
- # Iterations
- # Gradient steps

- Works off-policy
- Only one network, no high-variance policy gradient
- No convergence guarantees for non-linear function approximation

often structured to have s as input, different output for each a

Q-Learning

- Why can Q iteration be off-policy?
- What are we optimizing and how?
- Online Q Iteration
- Exploration

Why can this be off-policy?

Full Fitted Q Iteration Algorithm:

While not converged:

1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy Until data refresh:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$

Given s and a, transition is independent of $\pi!$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases}$$

> We can base our updates off of a database of transitions from different policies!

What are we optimizing?

Full Fitted Q Iteration Algorithm:

While not converged:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. Set
$$\phi \leftarrow \operatorname{argmin}_{\phi} \sum_{i} ||Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - y_{i}||^{2}$$

Bellman Error:

$$\mathcal{E} = E_{(\mathbf{s}, \mathbf{a}) \sim \beta} \left[\left(Q_{\phi}(\mathbf{s}, \mathbf{a}) - \left[r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}') \right] \right)^{2} \right]$$

- If Bellman error is 0, both the Q function and the policy are optimal
- We can get there in tabular case
- ➤ However, once function approximators are added, there is no guarantee.

Online Q-Learning

Full Fitted Q Iteration Algorithm:

While not converged:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$

Online Q Iteration Algorithm:

While not converged:

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$$

"temporal difference error"

$$\mathbf{a} = \operatorname{argmax}_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$$

Watkins Q-Learning

Exploration in Q-Learning

Online Q Iteration Algorithm:

While not converged:

- 1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$
- 2. Set $y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$
- 3. $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) y_i)$

To get this to work well, more work needs to be done.

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 - \epsilon & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ \epsilon/(|\mathcal{A}| - 1) & \text{otherwise} \end{cases}$$

"Epsilon-greedy"

$$\pi(\mathbf{a}_t|\mathbf{s}_t) \propto \exp(Q_{\phi}(\mathbf{s}_t,\mathbf{a}_t))$$

"Boltzmann"

Recap: Q-learning

Full Fitted Q Iteration Algorithm:

While not converged:

1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$ using some policy Until data refresh:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$

Online Q Iteration Algorithm:

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$

Lack of Guarantees

- Guarantees exist for tabular case
- Not with function approximation

Learning Q Functions: Tabular Case

Value Iteration Algorithm:

While not converged:

- 1. Set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. Set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

$V^{\pi}(s_{11})$	$V^{\pi}(s_{12})$	$V^{\pi}(s_{13})$	$V^{\pi}(s_{14})$
$V^{\pi}(s_{21})$	$V^{\pi}(s_{22})$	$V^{\pi}(s_{23})$	$V^{\pi}(s_{24})$
$V^{\pi}(s_{31})$	$V^{\pi}(s_{32})$	$V^{\pi}(s_{33})$	$V^{\pi}(s_{34})$
$V^{\pi}(s_{41})$	$V^{\pi}(s_{42})$	$V^{\pi}(s_{43})$	$V^{\pi}(s_{44})$

Define Bellman operator $\mathcal{B}: \mathcal{B}Q = r + \gamma \mathcal{T} \max_{\mathbf{a}} Q$

Optimal Q^* is a fixed point of \mathcal{B} , i.e. $Q^* = r + \gamma \mathcal{T} \max_{\mathbf{a}} Q^*$

- → Always exists, is always unique, always corresponds to optimal policy
- \rightarrow Can prove that Q iteration always reaches Q^* because \mathcal{B} is a contraction

Contraction:
$$\forall Q, \bar{Q} : ||\mathcal{B}Q - \mathcal{B}\bar{Q}||_{\infty} \leq \gamma ||Q - \bar{Q}||_{\infty}$$

 $||\mathcal{B}Q - \mathcal{B}Q^*||_{\infty} \leq \gamma ||Q - Q^*||_{\infty}$

< 1, gap decreases with iterations

Fitted Q Iteration: No Guarantees

Fitted Q Iteration Algorithm:

While not converged:

1. Set $y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_{\phi}(\mathbf{s}_i')]$ 2. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$ Define an operator $\Pi : \Pi Q = \operatorname{argmin}_{Q' \in \Omega} \frac{1}{2} \sum_i ||Q'(\mathbf{s}, \mathbf{a}) - Q(\mathbf{s}, \mathbf{a})||^2$

Fitted Q Iteration algorithm:

While not converged:

- $\to \mathcal{B}$ is a contraction w.r.t. ∞ -norm: $||Q \mathcal{B}\bar{Q}||_{\infty} \le \gamma ||Q \bar{Q}||_{\infty}$
- $\to \Pi$ is a contraction w.r.t. ℓ 2-norm: $||Q \Pi \bar{Q}||^2 \le ||Q \bar{Q}||^2$
- $\rightarrow \Pi \mathcal{B}$ is not a contraction w.r.t any norm!

No guarantees, in principle or practice...

 $\Omega(e.g.$ set of functions that can be represented by NN)

Online Q-Learning: Practical Issues

Online Q Iteration Algorithm:

While not converged:

- 1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$ Gradient descent?

Not gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$$

No gradient through this!

Advanced Value-Based Methods

- Practical Issues and Solutions
- Improvements
- Applications to Continuous Action Spaces
- Advanced Discrete-Actions Methods

Practical Issues and Solutions

- Correlated data → replay buffer
- Moving target → target network

Online Q-Learning: Practical Issues

Online Q Iteration Algorithm:

While not converged:

- 1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$ Gradient descent?

Not gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$$

No gradient through this!

Correlated Samples: Parallelization

Online Q Iteration Algorithm:

Correlation \implies local overfitting, forgetting!

While not converged:

1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$

2.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$$

 \rightarrow A partial solution: parallelize!

Synchronous

Get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$

 \blacksquare Update ϕ

Correlated Samples: Replay Buffer

Online Q Iteration Algorithm:

While not converged:

1. Take some action
$$\mathbf{a}_i$$
 and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$
2. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

Special case with 1 gradient step per experience

Full Fitted Q Iteration Algorithm:

While not converged:

1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

Until data refresh:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$

Off-policy: any policy will work (some better than others)

Replay Buffers

Q-Learning with a Replay Buffer:

- 1. Sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B} 2. $\phi \leftarrow \phi \alpha \sum_i \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$
- → Multiple samples in the batch (low-variance gradient)
- \rightarrow Samples are no longer correlated
- → Requires periodically feeding the replay buffer

Full Algorithm

Full Q-learning with a replay buffer:

- 1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add to \mathcal{B} .

2. Sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

Q-Learning: Practical Issues

Online Q Iteration Algorithm:

While not converged:

- 1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ One experience, data are correlated!

2. Set
$$y_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$
3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i)$ Gradient descent?

Still need to address this!

Not gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')])$$

No gradient through this!

A Moving Target?

Full Fitted Q Iteration Algorithm:

While not converged:

1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

Until data refresh:

2. Set
$$y_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$
3. Set $\phi \leftarrow \operatorname{argmin}_{\phi} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - y_i||^2$ Perfectly fine regression

 \rightarrow Converges close to targets,

not necessarily to good policy

Full Q-learning with a replay buffer:

While not converged:

- 1. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add to \mathcal{B} .

2. Sample a batch
$$(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$$
 from \mathcal{B}
3. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$

One gradient step toward a moving target

Q-learning with target networks

Q-learning with a replay buffer and target network:

- 1. Save target network parameters: $\phi' \leftarrow \phi$

Until target refresh:

2. Collect dataset
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$$
 using some policy, add to \mathcal{B} .

Until data refresh:

 $N \times$

3. Sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B}
 $K \times$
 $4. \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi'}(\mathbf{s}_i', \mathbf{a}_i')])$

- Targets don't change in inner loop
- Back to resembling supervised regression!

"Classic" Deep Q-Learning algorithm

Q-learning with a replay buffer and target network:

While not converged:

1. Save target network parameters: $\phi' \leftarrow \phi$

Until target refresh:

$$\begin{pmatrix} \times \\ 4 \end{pmatrix}$$

2. Collect dataset
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)\}$$
 using some policy, add to \mathcal{B} .

Until data refresh:

3. Sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B}
 $K \times \{A, \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}(\mathbf{s}_i, \mathbf{a}_i)}{d\phi} (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi'}(\mathbf{s}_i', \mathbf{a}_i')])$

"Classic" Deep Q-Learning Algorithm

While not converged:

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add to \mathcal{B}
- 2. Sample mini-batch $\{(\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j)\}$ from \mathcal{B} uniformly
- 3. Compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})}{d\phi} (Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$
5. Update ϕ' : copy ϕ every N steps

$$(K \to 1)$$

→ Much more stable than online deep Q learning

Alternate Target Network Formulation

"Classic" Deep Q-Learning Algorithm

While not converged:

- 1. Take some action \mathbf{a}_i , observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add to \mathcal{B}
- 2. Sample mini-batch $\{(\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j)\}$ from \mathcal{B} uniformly
- 3. Compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})}{d\phi} (Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5. Update ϕ' : copy ϕ every N steps

Intuition:

get target from here

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}, r) \quad \varphi$$

$$\phi$$
 (s, a, s

$$\phi$$
 (s, a, s', r

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$$
 ϕ $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ ϕ $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ ϕ $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$

$$\phi$$

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$$

Popular alternative:

5. Update
$$\phi': \phi' \leftarrow \tau \phi' + (1-\tau)\phi$$
 e.g. $\tau = 0.999$ works well

e.g.
$$\tau = 0.999$$
 works well

Process View

Q-learning with a replay buffer and target network:

While not converged:

1. Save target network parameters: $\phi' \leftarrow \phi$ Until target refresh:

2. Collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add to \mathcal{B} .

Until data refresh:

3. Sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ from \mathcal{B}

4.
$$\phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})}{d\phi} (Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'_{i}} Q_{\phi'}(\mathbf{s}'_{i}, \mathbf{a}'_{i})])$$

Collect new data

Remove old data

General View

- Fitted Q-iteration: Q-function regression in inner loop of target update, in inner loop of data collection
- > Online Q-Learning: Update on 1 data point, remove immediately, all processes run at same speed
- DQN: Data collection, Q-function regression at same speed; target update is slow

Improvements

- Double Q-Learning
- Multi-step returns

Are the Q-values accurate?

- Increase with return
- > Seem to qualitatively track what is going on...

V. Mnih et al. Human-level control through deep reinforcement learning. *Nature* **518**, p. 529–533 (2015).

Overestimation of Q-values

> Why is this?

van Hasselt et al. Deep Reinforcement Learning with Double Q-Learning. *AAAI*, 2016.

Overestimation of Q values

Target value:
$$y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$$

Consider two random variables: X1, X2

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

 $Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ is noisy $\implies \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ overestimates the next value!

$$\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$$

- \rightarrow Action selected according to $Q_{\phi'}$
- \rightarrow Value also comes from $Q_{\phi'}$

Double Q-Learning

$$E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$$

$$\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$$

- \rightarrow Can we decorrelate these sources of error?
- \rightarrow This would remove the tendency of regression targets to be too large!
- → Use different networks for choosing and evaluating value!

$$Q_{\phi_A}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_B}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi_A}(\mathbf{s}', \mathbf{a}'))$$

$$Q_{\phi_B}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_A}(\mathbf{s}', \operatorname{argmax}_{\mathbf{a}'} Q_{\phi_B}(\mathbf{s}', \mathbf{a}'))$$

→ "Double" Q-Learning

What two networks?

- \rightarrow Just use current and target networks!
- \rightarrow Standard Q-Learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \operatorname{argmax}_{\mathbf{a'}} Q_{\phi'}(\mathbf{s'}, \mathbf{a'}))$
- \rightarrow Double Q-Learning: $y = r + \gamma Q_{\phi'}(\mathbf{s'}, \operatorname{argmax}_{\mathbf{a'}} Q_{\phi}(\mathbf{s'}, \mathbf{a'}))$
- → Current network for evaluating action
- → Target network for evaluating value
- \rightarrow Decorrelates it enough!

Multi-Step Returns

Q-Learning target:
$$y_{j,t} = r_{j,t} + \gamma \max_{\mathbf{a}_{j,t+1}} Q_{\phi'}(\mathbf{s}_{j,t+1}, \mathbf{a}_{j,t+1})$$

More important if $Q_{\phi'}$ is bad (early) — More important if $Q_{\phi'}$ is good (late)

Like actor-critic, construct n-step returns:

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t'-t} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

- \rightarrow Another bias-variance tradeoff; N = 4 10 typically works well.
- \rightarrow Technically incorrect; we should be on-policy to do this.
- \rightarrow Works well in practice; can also force on-policy data.

Q-Learning Implementation Tips

T. Schaul, et al. "Prioritized experience replay". arXiv:1511.05952 (2015).

- Q –Learning can be difficult to stabilize
 - Test your code on easy tasks first!
- Learning may make little progress initially
- Start with larger epsilon initially, taper over time
- Large replay buffers help
- Gradient clipping on Bellman errors may help
- Double Q learning is very helpful- should always be used
- N-step returns can also be helpful, though not always
- Use an adaptive optimizer (e.g. Adam)
- Try multiple random seeds, as results can be inconsistent

Application to Continuous Action Spaces

- Sampling outcomes
- Separating state and action dependence
- DDPG

Q-Learning with Continuous Actions

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 & \text{if } \mathbf{a}_t = \operatorname{argmax}_{\mathbf{a}_t} Q_{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \text{otherwise} \end{cases} \to \text{How do we handle these?}$$

Target value:
$$y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$$

Options

- 1.) Gradient-based or stochastic optimization to take max
- 2.) Use function class for Q that is easy to optimize w.r.t. actions
- 3.) Learn an approximate optimizer (DDPG)

Q-Learning with Stochastic Optimization

Search over candidate values:

$$\max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) \approx \max\{Q(\mathbf{s}, \mathbf{a}_1), ..., Q(\mathbf{s}, \mathbf{a}_N)\}$$

 $(\mathbf{a}_1,...,\mathbf{a}_N)$ sampled from some distribution (e.g., uniform)

- > Simple
- > Parallelizable
- > Inaccurate
- Sometimes good enough; target doesn't have to be incredibly accurate.

Slightly Better:

- Cross-Entropy Method (good to about 40 dimensions)
 - Fit distribution to sampled Q values, use max of distribution
 - Repeat (iterative process)
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Less simple, more effective

Easily Maximizable Q-Functions

Use a function class that is easy to optimize

Only has to be easy to optimize in w.r.t. actions

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2}(\mathbf{a} - \mu_{\phi}(\mathbf{s}))^{T} P_{\phi}(\mathbf{s})(\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$

NAF: Normalized Advantaged Functions

$$\operatorname{arg} \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$$

- > Algorithm largely unchanged; remains efficient
- > Drawback is the reduction in representational power

S. Gu et al. Continuous Deep Q-Learning with Model-based Acceleration. *ICML* (2016).

Deep Deterministic Policy Gradient (DDPG)

- Learn an approximate maximizer
 - > "Deterministic" Actor-Critic (really approximate Q-learning)

$$\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = Q_{\phi}(\mathbf{s}, \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}))$$

Idea: Train another neural network $\mu_{\theta}(\mathbf{s})$ such that $\mu_{\theta}(\mathbf{s}) \approx \operatorname{argmax}_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$

How? Just solve $\theta \leftarrow \operatorname{argmax}_{\theta} Q_{\phi}(\mathbf{s}, \mu_{\theta}(\mathbf{s}))$

$$\frac{dQ_{\phi}}{d\theta} = \frac{d\mathbf{a}}{d\theta} \frac{dQ_{\phi}}{d\mathbf{a}}$$

New target: $y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta}(\mathbf{s}'_j)) \approx r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \operatorname{argmax}_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j))$

T.P. Lillicrap et al. Continuous Control with Deep Reinforcement Learning. *ICLR* (2016).

Deep Deterministic Policy Gradient (DDPG)

DDPG

While not converged:

- 1. Take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. Sample mini-batch $\{(\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j)\}$ from \mathcal{B} uniformly
- 3. Compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta'}(\mathbf{s}'_j))$ using target nets $Q_{\phi'}$ and $\mu_{\theta'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})}{d\phi} (Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) - y_{j})$$

5.
$$\theta \leftarrow \theta + \beta \sum_{j} \frac{d\mu(\mathbf{s}_{j})}{d\theta} \frac{dQ_{\phi}(\mathbf{s}_{j}, \mathbf{a})}{d\mathbf{a}}$$

6. Update parameters of target functions (ϕ' and θ')

T.P. Lillicrap et al. Continuous Control with Deep Reinforcement Learning. *ICLR* (2016).

DDPG: Pseudocode

Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer \mathcal{D}
- 2: Set target parameters equal to main parameters $\theta_{\text{targ}} \leftarrow \theta$, $\phi_{\text{targ}} \leftarrow \phi$
- 3: repeat
- 4: Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$

Noise added for exploration

- Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
- 8: If s' is terminal, reset environment state.
- 9: **if** it's time to update **then**
- 10: **for** however many updates **do**
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute targets

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s)) \quad \bullet$$

Parameters ϕ held constant in this step

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$

$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho)\theta$$

$$\rightarrow$$
 Off-policy

- 16: end for
- 17: end if
- 18: **until** convergence

Advanced Discrete-Action Methods

• Distributional, Rainbow

Dueling Architecture

Figure 1. A popular single stream Q-network (**top**) and the dueling Q-network (**bottom**). The dueling network has two streams to separately estimate (scalar) state-value and the advantages for each action; the green output module implements equation (9) to combine them. Both networks output Q-values for each action.

Z. Wang et al. "Dueling Network Architectures for Deep Reinforcement Learning" *arXiv:1511.06581*.

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a; \theta, \alpha))$$

Intuition: Forces network to consider value and advantage separately, leading to performance gains.

T. Schaul et al. "Prioritized Experience Replay." *ICLR*, 2016.

Prioritized Experience Replay

Algorithm 1 Double DQN with proportional prioritization

```
1: Input: minibatch k, step-size \eta, replay period K and size N, exponents \alpha and \beta, budget T.
 2: Initialize replay memory \mathcal{H} = \emptyset, \Delta = 0, p_1 = 1
 3: Observe S_0 and choose A_0 \sim \pi_{\theta}(S_0)
 4: for t = 1 to T do
        Observe S_t, R_t, \gamma_t
        Store transition (S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t) in \mathcal{H} with maximal priority p_t = \max_{i < t} p_i
        if t \equiv 0 \mod K then
           for j = 1 to k do
 8:
               Sample transition j \sim P(j) = p_j^{\alpha} / \sum_i p_i^{\alpha}
 9:
               Compute importance-sampling weight w_i = (N \cdot P(j))^{-\beta} / \max_i w_i
10:
               Compute TD-error \delta_j = R_j + \gamma_j Q_{\text{target}}(S_j, \arg\max_a Q(S_j, a)) - Q(S_{j-1}, A_{j-1})
11:
               Update transition priority p_j \leftarrow |\delta_j|
               Accumulate weight-change \Delta \leftarrow \Delta + w_i \cdot \delta_i \cdot \nabla_{\theta} Q(S_{i-1}, A_{i-1})
13:
14:
           end for
           Update weights \theta \leftarrow \theta + \eta \cdot \Delta, reset \Delta = 0
15:
           From time to time copy weights into target network \theta_{\text{target}} \leftarrow \theta
16:
17:
        end if
18:
        Choose action A_t \sim \pi_{\theta}(S_t)
19: end for
```

Preferentially sampling experiences based on TD-error Improves DQN performance.

Distributed Prioritized Experience Replay (Ape-X)

```
Algorithm 1 Actor
 1: procedure ACTOR(B, T)
                                                         ▶ Run agent in environment instance, storing experiences.
        \theta_0 \leftarrow \text{LEARNER.PARAMETERS}()
                                                                  ▶ Remote call to obtain latest network parameters.
 3:
                                                                                 ▶ Get initial state from environment.
        s_0 \leftarrow \text{ENVIRONMENT.INITIALIZE}()
 4:
        for t = 1 to T do
 5:
                                                                          ▶ Select an action using the current policy.
            a_{t-1} \leftarrow \pi_{\theta_{t-1}}(s_{t-1})
 6:
            (r_t, \gamma_t, s_t) \leftarrow \text{ENVIRONMENT.STEP}(a_{t-1})
                                                                              ▶ Apply the action in the environment.
 7:
            LOCALBUFFER.ADD((s_{t-1}, a_{t-1}, r_t, \gamma_t))
                                                                                            ⊳ Add data to local buffer.
 8:
            if LOCALBUFFER.SIZE() > B then > In a background thread, periodically send data to replay.
                                                           ▶ Get buffered data (e.g. batch of multi-step transitions).
 9:
                \tau \leftarrow \text{LOCALBUFFER.GET}(B)
                 p \leftarrow \text{COMPUTEPRIORITIES}(\tau) \triangleright \text{Calculate priorities for experience (e.g. absolute TD error)}.
10:
                                                                 Remote call to add experience to replay memory.
11:
                 REPLAY. ADD(\tau, p)
12:
             end if
13:
            PERIODICALLY(\theta_t \leftarrow \text{LEARNER.PARAMETERS}())
                                                                                  ▷ Obtain latest network parameters.
14:
         end for
15: end procedure
```

Algorithm 2 Learner

```
1: procedure LEARNER(T)
                                                            ▶ Update network using batches sampled from memory.
        \theta_0 \leftarrow \text{InitializeNetwork()}
 3:
        for t = 1 to T do
                                                                                     \triangleright Update the parameters T times.
 4:
            id, \tau \leftarrow \text{REPLAY.SAMPLE}() \triangleright \text{Sample a prioritized batch of transitions (in a background thread)}.
 5:
            l_t \leftarrow \text{COMPUTELOSS}(\tau; \theta_t)
                                                            ▶ Apply learning rule; e.g. double Q-learning or DDPG
 6:
            \theta_{t+1} \leftarrow \text{UPDATEPARAMETERS}(l_t; \theta_t)
 7:
            p \leftarrow \text{COMPUTEPRIORITIES()}
                                                      ▶ Calculate priorities for experience, (e.g. absolute TD error).
                                                                                    ▶ Remote call to update priorities.
 8:
            REPLAY. SETPRIORITY (id, p)
                                                                      ▶ Remove old experience from replay memory.
 9:
            PERIODICALLY(REPLAY.REMOVETOFIT())
10:
         end for
11: end procedure
```


Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

Distributional Reinforcement Learning: C51

M. G. Bellemare et al. "A Distributional Perspective on Reinforcement Learning" arXiv:1707.06887

$$Q(x,a) = E[R(x,a)] + \gamma E[Q(X',A')]$$

$$\to Z(x,a) = R(x,a) + \gamma Z(X',A')$$

Algorithm 1 Categorical Algorithm

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
Q(x_{t+1}, a) := \sum_i z_i p_i(x_{t+1}, a)
a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
m_i = 0, \quad i \in 0, \dots, N-1
for j \in 0, \dots, N-1 do
\# \text{Compute the projection of } \hat{\mathcal{T}}z_j \text{ onto the support } \{z_i\}
\hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{MIN}}}^{V_{\text{MAX}}}
b_j \leftarrow (\hat{\mathcal{T}}z_j - V_{\text{MIN}})/\Delta z \quad \# b_j \in [0, N-1]
l \leftarrow \lfloor b_j \rfloor, u \leftarrow \lceil b_j \rceil
\# \text{Distribute probability of } \hat{\mathcal{T}}z_j
m_l \leftarrow m_l + p_j(x_{t+1}, a^*)(u - b_j)
m_u \leftarrow m_u + p_j(x_{t+1}, a^*)(b_j - l)
end for
output -\sum_i m_i \log p_i(x_t, a_t) \quad \# \text{Cross-entropy loss}
```


Figure 1. A distributional Bellman operator with a deterministic reward function: (a) Next state distribution under policy π , (b) Discounting shrinks the distribution towards 0, (c) The reward shifts it, and (d) Projection step (Section 4).

Despite lack of guarantees, often works well!

Distributional DRL: Implicit Quantile Networks (IQN)

- Learns probability distribution of returns via quantile regression.
 - Quantile: fixed portion of a probability distribution
 - ➤ Uses ∞-Wasserstein metric for distribution distance (contraction)
 - Quantile regression loss is on pairwise TD errors
- Improve resolution of estimate with increased network capacity.
- Can be used to expand exploration strategies from basic epsilon-greedy via inclusion of distortion risk measures.

W. Dabney et al. "Implicit Quantile Networks for Distributional Reinforcement Learning" *arXiv:1806.06923*.

Distributional DRL: Implicit Quantile Networks (IQN)

Rainbow Q-Learning

- Combines numerous improvements to basic DQN algorithm to produce one very strong version.
- Elements:
 - Double
 - Multi-step returns
 - Dueling
 - > Prioritized Replay Buffer
 - Distributional
 - Noisy Nets

Thanks!

Enrique Mallada

mallada@jhu.edu http://mallada.ece.jhu.edu