
Lecture 1

Reinforcement Learning: Setup and Concepts

Goals of this lecture

1. Introduce reinforcement learning as a framework for decision-making through interaction.

2. Define the components of a Markov Decision Process (MDP): states, actions, and rewards.

3. Formalize the agent–environment interaction and the role of the transition kernel.

4. Explain the Markov property and key modeling assumptions.

5. Present the concept of policies as mappings from observations to actions.

1.1 Motivation and Historical Context

Why study Reinforcement Learning? Reinforcement learning provides a principled frame-
work for learning to act under uncertainty from trial and error. Breakthrough applications—ranging
from TD–Gammon and autonomous helicopter flight to recent game–playing systems such as Alp-
haZero—demonstrate that approximate solutions to high–dimensional MDPs can match or surpass
human performance. Beyond games, RL techniques underpin modern robotics, industrial control,
recommendation systems, and adaptive experimentation in healthcare.

Milestones
• 1960s–1990s: Dynamic Programming theory (Bellman), temporal–difference learning (Sut-
ton & Barto), and the first empirical successes such as TD–Gammon.

• 2000s: Convergence guarantees for Q–learning, PAC bounds for exploration (e.g., E3, R–Max).

• 2010s: Deep RL era—function approximation with neural networks (DQN), actor–critic
methods (A3C, PPO), and self–play systems (AlphaGo/AlphaZero).

These milestones illustrate how algorithmic progress follows advances in both theory (contrac-
tion mappings, stochastic approximation) and computation (GPU acceleration). A guiding theme
of this course is understanding why and when these algorithms work.

1

LECTURE 1. REINFORCEMENT LEARNING: SETUP AND CONCEPTS 2

1.2 Markov Decision Processes

We study sequential decision-making problems using the mathematical framework of Markov deci-
sion processes (MDPs). An MDP is formally defined by the tuple M = (S,A, P), where S is a set
of states, A is a set of actions, and P is the transition probability kernel describing the environment.
At each discrete time step t = 0, 1, 2, . . ., the agent observes the current state st ∈ S, selects an
action at ∈ A, and subsequently, the environment transitions to a new state st+1 and returns a
scalar reward rt+1. This sequential interaction between the agent and the environment is clearly
illustrated in Figure 1.1.

Agent:	

Environment	

ac�on

Figure 1.1: Agent–environment interaction loop under the Markov assumption. At each discrete
time step t, the agent observes the current state st and reward rt, selects an action at, and subse-
quently, the environment transitions to a new state st+1 and provides a new reward rt+1.

States. A state st ∈ S is a concise representation of the environment at time t, containing all
necessary information for the agent to select its next action. The set of states S can be finite, count-
able, or continuous, depending on the problem setting. Selecting a suitable state representation is
essential for effectively modeling and solving a sequential decision-making problem.

Actions. An action at ∈ A is a decision the agent makes at time t after observing the current
state st. The action influences how the environment evolves, thereby affecting future states and
rewards. Depending on the context, actions may be discrete (e.g., move left, right, up, or down)
or continuous (e.g., setting the velocity of a robot arm). The choice of action set A significantly
impacts the complexity and the performance of reinforcement learning methods.

Rewards. After executing an action, the agent receives a scalar reward rt+1 ∈ R ⊆ R, which
provides feedback about the immediate utility or quality of the transition. The reward serves as the
learning signal in reinforcement learning: the agent’s objective is to select actions that maximize
cumulative reward over time. The specific value of the reward depends on the environment dynamics
and the current state-action context.

Environment Process. We model the environment as a stochastic process described formally
by random variables. Specifically, we denote by St and Rt the state and reward random variables
at each time t, and by st and rt their realizations. Given the history of past interactions up to time
t:

ht = (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt, st),

LECTURE 1. REINFORCEMENT LEARNING: SETUP AND CONCEPTS 3

and the current action at, the environment’s dynamics are fully described by the transition kernel
P . For concreteness we will assume the sets S, A, and R to be finite. At each step t, the transition
kernel outputs the next reward Rt+1 and next state St+1 according to the conditional distribution:

(Rt+1, St+1) ∼ P (·, · | Ht=ht, At=at).

In other words, the probability

P (St+1 = s′, Rt+1 = r | Ht = h, At = a)

represents the likelihood that the environment transitions to state s′ and emits reward r, given that
the interaction history equals h and the agent selects action a at time t.

This interaction forms a stochastic process:

S0, A0, R1, S1, A1, R2, . . .

Markov Property. We assume the environment satisfies the Markov property, meaning that the
distribution over next states and rewards depends only on the current state-action pair (st, at), and
not on the entire past history ht. Formally, this is expressed as:

P (St+1=st+1, Rt+1=rt+1 | Ht=ht, At=at) = P (St+1=st+1, Rt+1=rt+1 | St=st, At=at), ∀ht.

To simplify notation, we write:

p(s′, r | s, a) := P (St+1=s′, Rt+1=r | St=s, At=a).

This compact form will be used throughout to describe the environment’s transition dynamics
under the Markov assumption.

Model Assumptions. As mentioned before, to simplify the theory, we assume that the state
space S and action space A are finite or countable. We also assume that R is finite; this is done
without loss of generality. The environment is stationary, meaning that the transition distribution
P (St+1, Rt+1 | St, At) does not change over time. Finally, we assume full observability: the agent
observes the true environment state st at each time step. We will later relax several of these
assumptions.

1.3 Modeling Transitions and Rewards

Having introduced the Markov property and the environment’s transition kernel, we now examine
how the joint distribution over next states and rewards can be represented, simplified, or factored.

Transition Probabilities. The Markov assumption allows us to describe the environment’s dy-
namics in terms of the conditional probability p(s′, r | s, a) over next states and rewards. Often, it
is convenient to separately represent state transitions by marginalizing over the rewards:

p(s′ | s, a) =
∑
r∈R

p(s′, r | s, a).

This state-transition probability describes how likely it is to transition into state s′ after taking
action a in state s, regardless of the reward received.

LECTURE 1. REINFORCEMENT LEARNING: SETUP AND CONCEPTS 4

Reward Distributions and Expected Rewards. Given the transition probabilities, the con-
ditional distribution of rewards given a state-action-next-state tuple can be recovered using Bayes’
rule:

p(r | s, a, s′) = p(s′, r | s, a)
p(s′ | s, a)

for all s′ such that p(s′ | s, a) > 0.

This explicitly separates the reward dynamics from state transitions, allowing more detailed mod-
eling of the environment.

In practice, it is often sufficient or computationally simpler to represent the reward signal using
only its expectation. The expected reward function r(s, a) summarizes the reward distribution into
a single scalar quantity:

r(s, a) = E[Rt+1 | St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a).

While the full MDP dynamics are described by the joint distribution p(s′, r | s, a), many re-
inforcement learning algorithms and analyses simplify modeling assumptions by using only the
marginal transition probabilities p(s′ | s, a) and the expected reward function r(s, a).

Alternative Environment Description. Instead of specifying the joint distribution p(s′, r |
s, a) directly, an equivalent and often convenient representation explicitly separates state transitions
from reward distributions. This alternative specification involves first modeling the transition
probabilities p(s′ | s, a) and then the conditional reward distributions p(r | s, a, s′). Formally, the
joint distribution can be recovered using the chain rule:

p(s′, r | s, a) = p(s′ | s, a) p(r | s, a, s′).

This factorization neatly decouples randomness in transitions from randomness in rewards, simpli-
fying analysis, simulations, and algorithmic implementations.

An important simplification occurs when rewards depend only on the current state-action pair
(s, a) and not on the next state s′. In this special (but common) case, the reward distribution
simplifies to:

p(r | s, a, s′) = p(r | s, a) for all s′.

If the reward distribution is further specialized to a deterministic function r(s, a), we obtain:

p(r | s, a) =

{
1 if r = r(s, a),

0 otherwise.

These assumptions simplify the representation significantly, making analysis and computation
more convenient, without losing the essential structure needed by most reinforcement learning
algorithms.

1.4 Policies and Agent Behavior

Policies. A policy defines the strategy by which an agent selects actions based on the information
it observes. In the most general setting, a policy maps the entire interaction history ht to a
probability distribution over actions. Formally, a general (history-dependent) policy π ∈ Π selects
actions according to:

At ∼ π(· | ht), or equivalently, π(at | ht) = Pπ(At = at | Ht = ht).

LECTURE 1. REINFORCEMENT LEARNING: SETUP AND CONCEPTS 5

When the environment satisfies the Markov property, it is natural and convenient to restrict
attention to policies that depend only on the current state st. Such a Markovian policy π ∈ ΠM

specifies the probability of selecting an action given the current state:

At ∼ π(· | st).

A policy can also be deterministic, π ∈ ΠD assigning a single action to each state:

at = π(st).

These policy classes form nested subsets:

ΠD ⊆ ΠM ⊆ Π.

Notes and Implications. Given a policy π and an initial state S0 = s, or distribution S0 ∼ ρ
the interaction between the policy and the environment induces a probability distribution Pπ over
the sequences of states, actions, and rewards, formally described as:

Ht ∼ Pπ(· |S0 = s) or Ht ∼ Pπ(· |S0 ∼ ρ)

We write the associated expectation as Eπ[·|S0 = s], explicitly denoting dependence on the policy
π. If the initial state S0 is drawn from an initial distribution ρ, we denote this as Eπ,ρ[·].

Several key theoretical and practical implications arise:
• For most MDPs, optimal policies exist within the class of Markovian policies ΠD, significantly
simplifying theoretical analysis and the design of algorithms.

• The definitions and results implicitly assume full observability of the state st. Extensions to
partially observed scenarios lead naturally to the generalization known as partially observable
Markov decision processes (POMDPs).

Throughout the course, we will frequently encounter these ideas, examining the theoretical ad-
vantages of Markovian policies and their practical applicability, as well as discussing generalizations
beyond full state observability.

1.5 Running Example: Gridworld (3× 3)

We illustrate the fundamental concepts of reinforcement learning using a small, intuitive 3×3 grid-
world environment illustrated in Figure 1.2a.1 In this example, an agent moves between adjacent
cells, aiming to reach a designated goal state while avoiding forbidden cells. At each step, the agent
chooses from five possible actions: move up, down, left, right, or stay still .

Environment. The environment consists of nine states, corresponding to the nine grid cells,
indexed as s1, s2, . . . , s9. Each state corresponds uniquely to the agent’s position on the grid (see
Figure 1.2b).

1This running example has been taken from [1]. I found it to be a good grounding example of several concepts.

LECTURE 1. REINFORCEMENT LEARNING: SETUP AND CONCEPTS 6

(a) Gridworld layout (b) State numbering (c) Available actions

Figure 1.2: The 3×3 Gridworld environment: (a) grid layout with goal and forbidden states, (b)
state indices, and (c) possible actions from a given state.

Actions and Transition Dynamics. From each state, the agent can select one of five possible
actions: up, down, left, right, or stay still. If an action would move the agent outside the grid
boundary, the agent remains in the current state, effectively ”bumping” against the boundary.
Similarly, attempting to enter a forbidden cell may result in the agent remaining in place or incurring
other specified penalties. Figure 1.2c shows the possible actions visually.

Formally, the environment’s dynamics are represented by transition probabilities p(s′ | s, a),
indicating the probability of moving from state s to state s′ after taking action a. In our Gridworld
example, the transitions are deterministic—meaning that each action from a given state always
leads to exactly one next state, with probability 1. Consequently, for each pair (s, a), there is a
single state s′ such that:

p(s′ | s, a) = 1, and p(s̃ | s, a) = 0 for all s̃ ̸= s′.

Table 1.1 explicitly lists these deterministic state transitions for each action-state pair. For
instance, from state s1, taking the upward action a1 results deterministically in remaining at s1,
since this action would attempt to move the agent outside the grid boundary. Similarly, taking
the rightward action a2 from s1 deterministically transitions the agent to state s2. Such clear
specification helps in understanding the agent’s possible moves, simplifying both theoretical analysis
and practical implementation.

Rewards. The agent receives numerical feedback from the environment in the form of rewards,
according to the following structure:

• rtarget = +1: when transitioning into the goal cell.

• rboundary = −1: when the agent attempts an action leading outside the grid boundary.

• rforbidden = −1: upon entering a forbidden cell.

• rother = 0: for all other transitions.
These rewards incentivize the agent to efficiently find the optimal path to the goal state while
avoiding penalties.

Given these rules, we define the reward function at the granularity of individual transitions
r(s, a, s′). For example, from state s1, taking the upward action a1 leads to a boundary collision,
resulting in the agent remaining in the same state with a penalty:

r(s1, a1, s1) = −1 .

References for Lecture 1 7

a1 (upward) a2 (rightward) a3 (downward) a4 (leftward) a5 (still)

s1 s1 s2 s4 s1 s1
s2 s2 s3 s5 s1 s2
s3 s3 s3 s6 s2 s3
s4 s1 s5 s7 s4 s4
s5 s2 s6 s8 s4 s5
s6 s3 s6 s9 s5 s6
s7 s4 s8 s7 s7 s7
s8 s5 s9 s8 s7 s8
s9 s6 s9 s9 s8 s9

Table 1.1: A tabular representation of the deterministic state transitions. Each cell shows the next
state given the current state and chosen action.

At state s8, taking the rightward action a2 leads to the goal state s9, producing a positive reward:

r(s8, a2, s9) = +1 .

For most other transitions—where the move is valid and does not lead to termination or penal-
ties—the reward is neutral:

r(s, a, s′) = 0 for all other (s, a, s′) .

This transition-level reward structure supports flexible environment modeling, allowing the agent
to distinguish not just which actions to take, but also how the resulting state affects the received
reward.

Policy. A policy in this gridworld scenario is a mapping from states to action probabilities. A
deterministic policy always selects the same action at each state, while a stochastic policy assigns
probabilities to multiple actions. Following a policy, the agent moves through the grid, generating
a trajectory composed of states, actions, and rewards.

Figure 1.3 illustrates a deterministic policy in our 3×3 Gridworld example. Under this policy
(Figure 1.3a), the agent selects a unique action in each state, leading to consistent, predictable
trajectories toward the goal state (Figure 1.3b). In contrast, Figure 1.4 shows an example trajec-
tory under a stochastic policy, where at certain states, actions are chosen probabilistically. This
randomness leads to variability in the paths the agent takes toward the goal, highlighting how
stochastic policies can help facilitate exploration.

Suggested Reading Before Lecture 2

• Sutton&Barto (2nd ed.), Chapter 1 and Section 2.1–2.2. Excellent narrative introduction.

• Szepesvári, Algorithms for RL, Section 2 for a more rigorous measure–theoretic treatment of
MDPs.

References for Lecture 1

[1] Shiyu Zhao.Mathematical Foundations of Reinforcement Learning. Springer Verlag, Singapore,
2025.

References for Lecture 1 8

(a) Deterministic policy (b) Trajectories under deterministic policy

Figure 1.3: Illustration of policies in the 3×3 Gridworld: (a) Deterministic policy, and (b) sample
trajectories under the deterministic policy.

Figure 1.4: Sample trajectory under a stochastic policy in the 3×3 Gridworld. At certain states,
the agent selects actions probabilistically, resulting in multiple possible paths toward the goal.

	Reinforcement Learning: Setup and Concepts
	Motivation and Historical Context
	Markov Decision Processes
	Modeling Transitions and Rewards
	Policies and Agent Behavior
	Running Example: Gridworld (3×3)

