
Reinforcement Learning Assignment

Assignment on Dynamic Programming and Operator Theory

Instructions. This short assignment is meant to reinforce core concepts from the first week of lecture. It
should take 1–2 hours to complete. All questions can be answered based on the lecture notes—no additional
material is required. Please show your work clearly. At the end, we include a few additional exercises that are
more challenging or involve programming. These are optional and intended for further practice or discussion.
Optional exercises are clearly marked with ∗.

Problem 1: Value Functions – Definitions and Relationship

(a) Definitions: Provide definitions for the state-value function vπ(s) and the action-value function qπ(s, a)
for a policy π. Explain clearly in words their meanings, the meaning of Eπ, γ, s, a.

(b) Relationship: Clearly derive or explain the relationship between vπ(s) and qπ(s, a).

Problem 2: Computing vπ via Bellman Equations

Consider an MDP with states S1, S2, actions a1, a2, rewards and transitions given by:

S1, a1 → S2, R = 0 S2, a2 → S1, R = 3

with discount γ = 0.5.

(a) Write down Bellman equations for vπ(S1) and vπ(S2).

(b) Solve for vπ.

Problem 3: Contraction and Banach Fixed-Point Theorem

(a) Define a contraction mapping.

(b) Show the Bellman expectation operator is a contraction under ∥ · ∥∞.

(c) Consequences of the Banach fixed-point theorem.
Show from basic arguments that if an operator T is a γ-contraction it cannot have multiple fixed points.

Problem 4: Monotonicity and Policy Iteration

(a) Monotonic policy evaluation. Show that if r(s, a) ≥ 0 for all (s, a), then, by initializing v0(s) = 0,
for all s, the value iteration algorithm for policy evaluation, i.e.,

vk+1 = Tπvk

gives a sequence satisfying
v0 ≤ v1 ≤ · · · ≤ vk ≤ · · · ≤ vπ.

(b) Outline Policy Iteration.

(c) Show that PI provides monotonic improvement.

(d) Explain finite termination. Why does the algorithm terminate?, and the total number of sets is at
most |A||S|?

Problem 5∗: Policy Evaluation in a Simple Gambling MDP

You are in a casino! You start with $10 and play until you either lose all your money or reach $30. On each
turn, you may choose one of two slot machines:

• Slot Machine A: costs $10 and pays $20 with probability 0.1, and $0 otherwise.

• Slot Machine B: costs $20 and pays $30 with probability 0.4, and $0 otherwise.
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(a) Compute the expected reward of a single play from each machine.

(b) Model this scenario as an MDP:

• Define the state space and action space.

• Identify terminal states.

• Sketch a diagram of the MDP (e.g., similar to Example 3.3 in Sutton & Barto).

(c) Suppose you follow a policy πβ that chooses machine A with probability β and machine B with
probability 1 − β when you have $20. When you have $10, only machine A is available. Derive and
solve the Bellman equations for vπβ ($10) and vπβ ($20).

(d) What is the optimal policy? Justify your answer based on the expressions from (c).

(e) Bonus: Generalize machine B to return $30 with probability η (instead of 0.4). What condition on η
ensures that all policies πβ are equally good?

Problem 6∗: Equivalence of Discounted and Undiscounted MDPs with Geometric
Horizon

Consider an undiscounted MDP M with action space A and state space S ∪ {z} where z is an absorbing,
terminal state satisfying:

p(z | z, a) = 1 ∀a ∈ A, r(z, a) = 0 ∀a ∈ A.

Assume that each step has a constant probability of transitioning to the terminal state:

P (z | s, a) = 1− γ for all (s, a) ∈ S ×A.

The goal is to maximize the cumulative undiscounted reward:

Eπ

[ ∞∑
t=0

Rt+1

∣∣∣∣S0 = s

]
, s ∈ S.

(a) Let T denote the time step at which the process transitions to the absorbing state z, starting from
S0 = s. Show that T follows a geometric distribution and compute its parameter.

(b) Define the Bellman operators for this MDP as:

(Tπv)(s) =
∑
a∈A

π(a | s)

r(s, a) +
∑

s′∈S∪{z}

P (s′ | s, a)v(s′)

 ,

(T ∗v)(s) = max
a∈A

r(s, a) +
∑

s′∈S∪{z}

P (s′ | s, a)v(s′)

 .

Show that these operators are equivalent to the Bellman operators for a discounted MDP M̃ (with no
terminal state and discount factor γ), with adjusted transition probabilities:

P̃ (s′ | s, a) = 1

γ
P (s′ | s, a).
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Problem 7∗: Robustness of Value Functions to Reward Perturbations

Let M = (S,A,R, p, γ) be an MDP with discount factor γ ∈ (0, 1). Consider a perturbed MDP M̂ =
(S,A,R, p̂, γ), where:

p̂(s′ | s, a) = p(s′ | s, a), for all s, a, s′,

and the reward distributions differ by at most ϵ in expectation:∣∣∣∣∣∑
r

rp̂(r | s, a)−
∑
r

rp(r | s, a)

∣∣∣∣∣ ≤ ϵ ∀s, a.

(a) Let v∗(s) and v̂∗(s) be the optimal value functions of M and M̂ , respectively. Show that:

∥v∗ − v̂∗∥∞ ≤ ϵ

1− γ
.

(Hint: Let Tmax and T̂max be the Bellman optimality operators of M and M̂ , respectively. Use the
contraction property of Tmax and compare the fixed points.)

(b) Suppose instead that the rewards in M̂ are deterministically shifted by ϵ:

r̂(s, a) = r(s, a) + ϵ, ∀s, a.

Show that:
v̂∗(s) = v∗(s) +

ϵ

1− γ
, ∀s.
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