Reinforcement Learning Assignment

Assignment on Dynamic Programming and Operator Theory

Instructions. This short assignment is meant to reinforce core concepts from the first week of lecture. It
should take 1-2 hours to complete. All questions can be answered based on the lecture notes—mno additional
material is required. Please show your work clearly. At the end, we include a few additional exercises that are
more challenging or involve programming. These are optional and intended for further practice or discussion.
Optional exercises are clearly marked with *.

Problem 1: Value Functions — Definitions and Relationship

(a) Definitions: Provide definitions for the state-value function v™(s) and the action-value function q™ (s, a)
for a policy 7. Explain clearly in words their meanings, the meaning of E,, v, s, a.

(b) Relationship: Clearly derive or explain the relationship between v™(s) and ¢™ (s, a).

Problem 2: Computing v™ via Bellman Equations

Consider an MDP with states S1, .Sz, actions a1, as, rewards and transitions given by:
Sl,a1—>SQ,R:0 52,a2_>Sl,R:3

with discount v = 0.5.
(a) Write down Bellman equations for v™(S;) and v™(S2).
(b) Solve for v™.

Problem 3: Contraction and Banach Fixed-Point Theorem

(a) Define a contraction mapping.
(b) Show the Bellman expectation operator is a contraction under | - | «.

(c) Consequences of the Banach fixed-point theorem.
Show from basic arguments that if an operator T is a ~y-contraction it cannot have multiple fixed points.

Problem 4: Monotonicity and Policy Iteration

(a) Monotonic policy evaluation. Show that if r(s,a) > 0 for all (s,a), then, by initializing vo(s) = 0,
for all s, the value iteration algorithm for policy evaluation, i.e.,

Vg1 = T

gives a sequence satisfying
vo Svp < Sy < - <07

(b) Outline Policy Iteration.
(c) Show that PI provides monotonic improvement.

(d) Explain finite termination. Why does the algorithm terminate?, and the total number of sets is at
most |A|IS1?
Problem 5*: Policy Evaluation in a Simple Gambling MDP

You are in a casino! You start with $10 and play until you either lose all your money or reach $30. On each
turn, you may choose one of two slot machines:

e Slot Machine A: costs $10 and pays $20 with probability 0.1, and $0 otherwise.

e Slot Machine B: costs $20 and pays $30 with probability 0.4, and $0 otherwise.
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(a) Compute the expected reward of a single play from each machine.
(b) Model this scenario as an MDP:

e Define the state space and action space.
e Identify terminal states.

e Sketch a diagram of the MDP (e.g., similar to Example 3.3 in Sutton & Barto).

(c) Suppose you follow a policy mz that chooses machine A with probability 5 and machine B with
probability 1 — 8 when you have $20. When you have $10, only machine A is available. Derive and
solve the Bellman equations for v™#($10) and v™5 ($20).

(d) What is the optimal policy? Justify your answer based on the expressions from (c).
(e) Bonus: Generalize machine B to return $30 with probability 7 (instead of 0.4). What condition on n

ensures that all policies g are equally good?

Problem 6*: Equivalence of Discounted and Undiscounted MDPs with Geometric
Horizon

Consider an undiscounted MDP M with action space A and state space S U {z} where z is an absorbing,
terminal state satisfying:

p(z]z,a)=1 Vac€ A, r(z,a) =0 Vae€ A
Assume that each step has a constant probability of transitioning to the terminal state:
P(z|sa)=1—7 for all (s,a) € S x A.

The goal is to maximize the cumulative undiscounted reward:

o0
Y Rin
=0

(a) Let T denote the time step at which the process transitions to the absorbing state z, starting from
So = s. Show that T follows a geometric distribution and compute its parameter.

Eqr

50281, seS.

(b) Define the Bellman operators for this MDP as:

(Trv)(s) = > mlal]s) [r(s,a)+ Y. P(s'|s,a)(s) |,

acA s’eSU{z}
* _ / ’
(T*v)(s) = max r(s,a) + Z P(s' | s,a)v(s")
s'eSU{z}

Show that these operators are equivalent to the Bellman operators for a discounted MDP M (with no
terminal state and discount factor «y), with adjusted transition probabilities:

- 1
P(s'| s,a) = —P(s' | s,a).
v
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Problem 7*: Robustness of Value Functions to Reward Perturbations

Let M = (S, A,R,p,v) be an MDP with discount factor v € (0,1). Consider a perturbed MDP M =
(87 A, R?ZA), 7)7 Where:
p(s' | s,a) =p(s' | s,a), foralls, a,s,

and the reward distributions differ by at most € in expectation:
ZTﬁ(T | s,a) — er('r | s,a)] <€ Vs, a.
T T

(a) Let v*(s) and 9*(s) be the optimal value functions of M and M, respectively. Show that:

€
[0 = 0%l < :

(Hint: Let Tmax and Trnax be the Bellman optimality operators of M and M , respectively. Use the
contraction property of Tmax and compare the fixed points.)

(b) Suppose instead that the rewards in M are deterministically shifted by e:
7(s,a) = r(s,a) +€, Vs, a.

Show that:




